别唬人了!我们真的需要盲目烧钱追求大数据吗?

 MB到GB的范围,完全可以在一台计算机甚至笔记本电脑上完成。

Yahoo!也存在类似的情况, Yahoo!集群机所处理的数据中位数只有 12.5GB,通常台式电脑不能处理这种任务,但一台配置较好的服务器完全可以胜任。

以上观点均提炼于Microsoft Research的一篇名为《 Nobody ever got fired for buying a cluster》的论文。论文中指出即使是在最渴求数据的公司,多数问题也不必集群处理。因为对于大量问题类型而言,集群是一个相对低效 甚至是完全不合适的解决方案。

理由二,大数据已经成为数据分析的代名词,这种定义是混乱的,并会起到反作用。

数据分析最早可追溯到为皇家粮仓的所有粮食制表统计,但是现在你必须要在数据前加“大”字,必要的数据分析已经卷入了一场较大但是用处不大的流行风暴中。例如,一篇文章告诫读者“ 3个步骤将大数据运用到你的小企业中”,其实小企业的数据量谷歌文档就能处理,更不说用笔记本的EXCEL了。

这就是说,实际上大多数企业处理的数据都是被Open Knowledge Foundation的Rufus Pollock所说的小数据。这很重要,这是一场“革命”, Pollock称。但它与大数据关系不大。

理由三,超大化你的数据规模正在变成一件得不偿失的事情。

数据越多就越好吗?不尽然。如果你正在寻找相关方程式——x,y的关系,如何能给我提供有效信息?实际上数据越多,随之而来的麻烦也越大。