4. 人工神经网络和遗传基因算法
人工神经网络是一个迅速发展的前沿研究领域,对计算机科学 人工智能、认知科学以及信息技术等产生了重要而深远的影响,而它在数据挖掘中也扮演着非常重要的角色。人工神经网络可通过示例学习,形成描述复杂非线性系统的非线性函数,这实际上是得到了客观规律的定量描述,有了这个基础,预测的难题就会迎刃而解。目前在数据挖掘中,最常使用的两种神经网络是BP网络和RBF网络 不过,由于人工神经网络还是一个新兴学科,一些重要的理论问题尚未解决。
5. 规则归纳
规则归纳相对来讲是数据挖掘特有的技术。它指的是在大型数据库或数据仓库中搜索和挖掘以往不知道的规则和规律,这大致包括以下几种形式:IF … THEN …
6. 可视化技术
可视化技术是数据挖掘不可忽视的辅助技术。数据挖掘通常会涉及较复杂的数学方法和信息技术,为了方便用户理解和使用这类技术,必须借助图形、图象、动画等手段形象地指导操作、引导挖掘和表达结果等,否则很难推广普及数据挖掘技术。
四 数据挖掘技术实施的步骤
数据挖掘的过程可以分为6个步骤:
- 1) 理解业务:从商业的角度理解项目目标和需求,将其转换成一种数据挖掘的问题定义,设计出达到目标的一个初步计划。
- 2) 理解数据:收集初步的数据,进行各种熟悉数据的活动。包括数据描述,数据探索和数据质量验证等。
- 3) 准备数据:将最初的原始数据构造成最终适合建模工具处理的数据集。包括表、记录和属性的选择,数据转换和数据清理等。
- 4) 建模:选择和应用各种建模技术,并对其参数进行优化。
- 5) 模型评估:对模型进行较为彻底的评价,并检查构建模型的每个步骤,确认其是否真正实现了预定的商业目的。
- 6) 模型部署:创建完模型并不意味着项目的结束,即使模型的目的是为了增进对数据的了解,所获得的知识也要用一种用户可以使用的方式来组织和表示。通常要将活动模型应用到决策制订的过程中去。该阶段可以简单到只生成一份报告,也可以复杂到在企业内实施一个可重复的数据挖掘过程。控制得到普遍承认。
五 数据挖掘的应用现状
数据挖掘是一个新兴的边缘学科,它汇集了来自机器学习、模式识别、数据库、统计学、人工智能以及管理信息系统等各学科的成果。多学科的相互交融和相互促进,使得这一新学科得以蓬勃发展,而且已初具规模。在美国国家科学基金会(NSF)的数据库研究项目中,KDD被列为90年代最有价值的研究项目。人工智能研究领域的科学家也普遍认为,下一个人工智能应用的重要课题之一,将是以机器学习算法为主要工具的大规模的数据库知识发现。尽管数据挖掘还是一个很新的研究课题,但它所固有的为企业创造巨大经济效益的潜力,已使其很快有了许多成功的应用,具有代表性的应用领域有市场预测、投资、制造业、银行、通讯等。
美国钢铁公司和神户钢铁公司利用基于数据挖掘技术的ISPA系统,研究分析产品性能规律和进行质量控制,取得了显著效果。通用电器公司(GE)与法国飞机发动机制造公司(sNEcMA),利用数据挖掘技术研制了CASSIOP.EE质量控制系统,被三家欧洲航空公司用于诊断和预测渡音737的故障,带来了可观的经济效益。该系统于1996年获欧洲一等创造性应用奖。
享有盛誉的市场研究公司,如美国的A.C.一Nielson和Information Resources,欧洲的GFK和ln.fratest Burk等纷纷开始使用数据挖掘工具来应付迅速增长的销售和市场信息数据。商家的激烈竞争导致了市场快速饱和,产品的迅速更新,使得经营者对市场信息的需求格外强烈利用数据挖掘技术所形成的市场预测能力和服务,使这些市场研究公司取得了巨大收益。
英国广播公司(BBC)也应用数据挖掘技术来预测电视收视率,以便合理安排电视节目时刻表。信用卡公司Alllelicall KxT,ress自采用数据挖掘技术后,信用卡使用率增加了10% 一15%。AT&T公司赁借数据挖掘技术技术侦探国际电话欺诈行为,可以尽快发现国际电话使用中的不正常现象。
更多详细信息,请您微信关注“计算网”公众号: