机遇高于一切 大数据之路不好走

随着生活越来越丰富,大数据也变得越来越难以处理;同时因为数据体积增大、数据类型繁多,技术人员在分析过程中不得不克服大量的挑战和障碍。本文将讨论为什么数据会变得越来越复杂及难以管理,以及在我们分析、整合及存储这些数据时又会面临哪些挑战及障碍,当然还有大数据又会给未来带来什么样的机遇。

大数据

大数据确实很大并且很复杂
 
举个简单的例子,去参加一个小朋友的生日派对。在出发时,你会发送一个tweet说明一下,数据随之产生。车在半路上,停车加油,付款时果断产生了数据。在超市购买生日卡片,扫描购物卡、结账同样产生了数据。在生日派对中,拍个照片,录段视频,当你在Facebook、Flickr以及Youtube上发布时同样产生了数据。在派对过程中发送的消息,同样产生了数据。贯穿整个过程,你的手机因不停的发送GPS位置而产生数据,你的车因为不停的追踪燃耗而产生数据。由此可见,我们在日常行为活动中产生了大量的数据。
 
通过IBM了解到,我们每天大约建立2.5 quintillion(1 000 0003)字节的数据,而在过去两年建立了总数据量的90%,同时数据体积以指数的方式增加。随着公司数据捕获能力的增强、多媒体变得流行、社交媒体会话的增加以及使用互联网做更多的事情,数据的体积也不可思议的速度激增。
 
大数据究竟有多复杂
 
大数据是复杂的。之所以复杂因为数据的多样性,其中包括结构化数据和非结构化数据。大数据的复杂还在于交付和使用的速度,比如“实时”。并且,大数据的复杂还在于数据的体积。以前家用存储说的是MB和GB,现在讲的已经是TB了,而企业早已跨入PB单元。
 
大数据市场
 
大数据增加了信息管理业务的需求,比如Software AG、Oracle Corporation、IBM、Microsoft、SAP、EMC和HP已经支付150亿美元给专门从事数据管理和分析的软件公司。在2010年,这个产业自身的价值已经超过1000亿美元,并以每年10%的速度增长着——比整个软件业务快2倍。
 
发达经济体让大数据密集型技术得到更广泛的使用。世界范围内,有46亿的移动终端在产生数据,有10到20亿人在访问互联网。在1990到2005期间,超过10亿人进入了中产阶级,更多富起来的人同样导致了信息的增长。在1986年,世界电信网络有效的信息交互能力为281 PB,1993年为471 PB,2000年为2.2 EB,2007年为65EB,而在2013年,预计的通信总量为667 EB。
 
大数据分析
 
大数据需求在可容忍时间内对大体积数据进行处理特殊的技术,大数据分析实践者通常不喜欢共享储存,更倾向于直接连接存储(Direct Attached Storage,DAS),在并行的内部处理节点中混合使用了高速SSD与高容量SATA磁盘。而当下的共享储存架构SAN及NAS已被扣上缓慢、复杂及昂贵的头衔,该类型架构完全不符合现下大数据技术在性能、商用服务器及低成本上的标准。
 
实时及近实时的信息交付已成为大数据分析的界定特征,尽可能的避免延时同样成为大数据技术的首要挑战之一。数据更希望被存储在内存中,而不是其他终端FC SAN连接的机械硬盘上。同样在大数据情景下,SAN模式下对分析应用程序的要求上比其它类型存储要高得多。
 
当然,共享存储在大数据分析情景下也有着自己的优势,但是自2011年以后,已不为绝大多数大数据实践者所采纳。
 
大数据挑战及障碍
 
鉴于复杂性,大数据处理面临着一系列挑战:

  • 1. 在类似文本或视频的非结构化数据上,我们要如何去理解及使用。
  • 2. 我们该如何在数据产生时捕获最重要的部分,并实时的将它交付给正确的人。
  • 3. 鉴于当下的数据体积和计算能力,该如何储存、分析及理解这些数据。
  • 4. 缺乏人才。当下讨论最多的问题就是缺乏大数据人才,值得庆幸的是许多教育机构都针对此开设了相应的学术课程。而我们也看到一些更好的现象,企业和高校合作共同对抗这个人才稀缺问题,这也是最有效的人才培养途径。
  • 5. 其它一些固有的挑战,隐私、访问安全以及部署

    更多详细信息,请您微信关注“计算网”公众号: