数据科学的崛起,为我们思考“热门专业”、“新兴学科”的个人教育战略提供了一个典型范例。数据科学炙手可热,一大堆学位或证书课程迅速上马。但是我们必须注意到两点:第一,这些上马的课程,主要是研究院的课程,不是本科课程。第二,这些课程准入门槛很高,不是谁都能上。数理基础不行的,最好绕道走。这也保证了这些课程规模有限,所培养的人才在未来几年颇有些垄断优势,锁定了高薪。
中国的学生和家长,特别喜欢追“热门专业”。我对他们的劝告是:本科阶段,最好学一些基础专业,如文史、经济学、数理化、工程等等。这是本。某些花哨的“热门专业”,多属雕虫小技,是末。切不可本末倒置、轻上时髦专业的“贼船”。第一,“热门专业”来得快,去得也快,大家追风扎堆,转眼间就人才过剩。本科四年时间非常长。进去时某个专业还在热,毕业时可能黄瓜菜都凉了,已经成为待业大本营。第二,本科的“热门专业”,作为新学科往往不成熟,缺乏学术传统,教授东拼西凑,灌水成分比较大。跟着这些杂牌军学不到真本事。
与此相对,如果本科不追时尚,修炼好数理、文史和社会科学方面的基本功,日后学什么都快。有了本科练就的功夫,申请研究院就有本钱,到那时跳到“热门专业”也不晚。一个“热门专业”的硕士课程,往往就一两年,时间短得多,“热门”变冷的机会自然小得多。在本科基本功的底子上短平快地攻克一个新学科,比起投入本科四年来要保险(放心保)稳妥得多。特别是数据科学这样的热门专业,虽然在商业中的运用最广、需求最大,但商科学生往往学不了,反而是数学系的“书呆子”们有先声夺人之优势。所以,对待大学教育,切不可急功近利。否则恐怕就会落得个“机关算尽太聪明”……
VIA:中国经营报
更多详细信息,请您微信关注“计算网”公众号: