除了让业务部门强化一线动员能力与责任,目前没有任何单一的方案能够清楚地阐释公司应该在何处增设新领导职位。由于数据分析应用尚未成熟,这样的答案不难理解。尽管如此,企业领导人在审视多项选择时不要盲目,思考以下三个关键问题的答案将帮助企业领导人理顺公司结构变化方案:
不同业务部门间,是否需要应用核心客户或运营数据库?
有没有必要在内部创建大量数据分析资源,以此保留人才并创造专利资产与优势?
目前,每个业务部门的管理者能否有效应对管理模式变化带来的挑战?或者公司需要增设新的高管职位专门负责数据分析?
当中心数据资产成为关键
在许多客户服务公司,数据分析意味着整合不同业务部门或渠道的交易数据。这有助于企业深入了解客户与企业网站的交互,或者客户在选择在线购物或线下购物的决策心理。这些公司通常已(或正在)建立新的数据库中心或者数据环境,并提升相关数据管理能力。此外,他们也正在制定新的制度,在保障安全数据访问的同时保护客户隐私并确保核心客户不受匿名骚扰。
针对这些公司,增设首席信息官来领导数据分析战略以及人才建设发展是一种较普遍且可行的方案。职责上,首席信息官致力于发展数据分析基础设备并辅助企业各业务部门适应变革,抓住数据分析的机遇。
举例来说,一家多元化经营客户服务公司,其董事会与高层领导团队皆明白,利用自身多渠道数据库抓牢数据分析机遇将显著改善企业运营状况。意识到中心数据库在公司发展议程中关键性,公司领导指派了一名首席信息官负责并制定公司数据分析战略。
公司管理层认识到各业务部门皆有各自的数据分析侧重方向,如优化推广优惠价或者库存状况。此外,不同的管理团队需要将不同的数据分析结果应用到各自部门中。因此,管理层得出结论:在这些情况下,让数据中心管理分析与前线培训,这样的做法并不可取;应该让首席信息官与各业务部门主管合作,共同且有区别地承担责任。
目前,该首席信息官已经参与了两个核心项目。其一,创建新的基础设施将公司多渠道交易数据与外部社交媒体与竞争性信息结合,并通过直观界面向企业各部门推送数据分析结果;其二,组建数据分析专业团队,对不同业务部门指派专家指导,但专家由中心统一管理。数据分析团队由经验资深的主管带领,该主管向首席信息官报告进程。同时,业务部门主管需要寻找各自数据分析侧重方向,培训一线经理相关技能。
当内部数据分析能力成为企业运营关键
第二种方案。这种方案与第一类方案在集中管理方面存在诸多相似点,但第二种方案具体适用于决定自主搭建数据分析平台而不外包的企业。因此,这些企业通常在内部集中建设数据分析设施与团队,旨在为公司各业务部门创建一个数据分析公共平台,以此创造更多价值。
在一家面向消费者的公司里,数据分析能力与领导力,皆集中于金融与风险管理团队中。过去,这个团队长期负责关键数据相关价值创造。当这家公司开始追求更宏大的数据分析战略时,首席财务官被赋予了数项职责,包括制定基本战略,审查核心风险管理数据分析工具自制或外购决策,调用数据分析团队资源与数据分析能力建设。
然而,完成这些有关数据分析的初期决策后,首席执行官与首席财务官很快意识到需要更多支持来获得更准确的分析结果,协助业务部门调整适应数据分析带来的变化并革新业务部门的某些流程。为实现目标,他们在首席财务官下属团队中内增设了新职位——首席数据官。首席数据官负责信息管理,与业务部门主管合作探索潜在、有价值的内与外部数据(这些数据可能过去从未被发掘)。很多公司会发现,他们非常需要这样能够支持高管工作的业务部门主管,以此发觉更多数据优势,定位数据分析方向从而加快前线应用。
当业务部门规模与复杂数据管理成为关键
不论是集中管理或是其他方式,数据分析的重担将落在每个业务部门或职能部门领导头上。业务部门面临的关键问题在于是否应该增设新职或者要求关键领导人(如首席营销官或者运营总监)在负荷饱和的各业务部门中部署新职责。
一家大型金融服务公司高级管理者综合了解了该方案后,他们认为,在数据分析上加倍投入将显著提升业务部门的竞争力。为了坚定推行该方案,该公司招聘了一位首席分析官。首席分析官向业务一线主管报告并领导与监管由内部顾问、分析模型师、软件工程师组成的数据分析中心。