从Hadoop 说起 六个真实的大数据应用案例

案例主要关注三个问题:数据从哪里来?数据如何存储?数据如何计算?

1. Last.fm

 Last.fm
1.1 背景
创建于2002年,提供网络电台和网络音乐服务的社交网络。每个月有2500万人使用Last.fm,产生大量数据。现在有了中文版http://cn.last.fm/,界面很不错!

2006年初,Last.fm开始使用Hadoop,几个月后投入实际应用。Hadoop是Last.fm基础平台的关键组件,有2个Hadoop集群,50台计算机,300个内核,100TB的硬盘空间。在集群上,运行数百种各种日常作业,包括日志文件分析,A/B测试评测,即时处理和图表生成。

1.2 图表生成

图表生成是Hadoop在Last.fm的第一个应用。

1.3 数据从哪里来

Last.fm有两种收听信息:用户播放自己的音乐,如pc或者其他设备mp3,这种信息通过Last.fm的客户端或者第三方应用发送到Last.fm,这一类叫scrobble收藏数据;用户收听Last.fm网络电台的节目,以及听节目时候的喜爱,跳过,禁止等操作信息,这一类叫radio listen电台收听数据。

1.4 数据存储

收听数据被发送到Last.fm,经历验证和转换,形成一系列有空格分隔的文本文件,包含用户id-userid,音乐id-trackid,这首音乐被收藏的次数scrobble,这首音乐在电台中收听的次数radio,被跳过的次数skip。真实数据达到GB级别,有更多属性字段。

1.5 数据处理

1.5.1 Unique Listeners作业:统计收听某一首歌的不同用户数,也就说说,有多少个用户听过某个歌,如果用户重复收听,只算一次。
1.5.2 Sum作业:每首歌的收听总数,收藏总数,电台收听总数,被跳过的总数。
1.5.3 合作作业:每首歌的被多少不同用户收听总数,收听总数,收藏总数,电台收听总数,被跳过的总数。
1.5.4 这些数据会被作为周排行榜等在Last.fm主站上显示出来。

2. Facebook

facebook

2.1 背景

Facebook社交网络。
开始时,试用一个小Hadoop集群,很成功。同时开始开发Hive,Hive让工程师能用SQL语言处理Hadoop集群的数据,毕竟很多人更熟悉SQL。后来,Facbook运行了世界第二大Hadoop集群,数据超多2PB,每天加入10TB数据,2400个内核,9TB内存,大部分时间硬件满负荷运行。

2.2 使用情况

2.2.1 在大规模数据是以天和小时为单位产生概要信息。如用户数,网页浏览次数,网站访问时间增常情况,广告活动效果数据,计算用户喜欢人和应用程序。
2.2.2 分析历史数据,以设计和改进产品,以及管理。
2.2.3 文件存档和日志查询。

2.3 广告分析

2.3.1 cpc-cost perclick点击数计费,cpm-cost per mille每千人成本。
2.3.2 个性化广告定制:根据个体用户进行不同的内容剪辑。Yahoo!的SmartAds,Facebook的Social Ads,Engagement Ad广告意见/嵌入视频交互。Facebook每天处理1TB数量级广告数据。
2.3.3 用Hive分析A/B测试的结果。
2.3.4 Hadoop和Hive分析人气网站,生物信息公司,原油勘探公司,在线广告。

3.Nutch搜索引擎

Nutch 搜索引擎

3.1 Nutch框架用户建立可扩展的crawler网络爬虫和搜索引擎。

3.2 架构

3.2.1 crawlDb网页数据库:跟踪网络crawler抓取的网页和它们的状态。
3.2.2 fetchlist爬取网页清单:crawler定期刷新web视图信息,下载新的网页。
3.2.3 page content原始网页数据:从远程网站下载,以原始的未世界的格式在本地存储成字节数组。
3.2.4 解析的网页数据:Nutch为html, pdf, open office, ms office, rss提供了解析器。
3.2.5 linkdb链接图数据库:page rank来的。
3.2.6 lucene全文检索索引:倒排索引,基于搜集到的所有网页元数据和抽取到的纯文本内容建立。

更多详细信息,请您微信关注“计算网”公众号: