大数据处理需要用到的九种编程语言

随着大数据的热潮不断升温,几乎各个领域都有洪水倾泻般的信息涌来,面对用户成千上万的浏览记录、记录行为数据,如果就单纯的Excel来进行数据处理是远远不能满足的。但如果只用一些操作软件来分析,而不怎么如何用逻辑数据来分析的话,那也只是简单的数据处理。

大数据

替代性很高的工作,而无法深入规划策略的核心。

当然,基本功是最不可忽略的环节,想要成为数据科学家,对于这几个程序你应该要有一定的认识:

R

若要列出所有程序语言,你能忘记其他的没关系,但最不能忘的就是R。从1997年悄悄地出现,最大的优势就是它免费,为昂贵的统计软件像是Matlab或SAS的另一种选择。

但是在过去几年来,它的身价大翻转,变成了资料科学界眼中的宝。不只是木讷的统计学家熟知它,包括WallStreet交易员、生物学家,以及硅谷开发者,他们都相当熟悉R。多元化的公司像是Google、Facebook、美国银行以及NewYorkTimes通通都使用R,它的商业效用持续提高。

R的好处在于它简单易上手,透过R,你可以从复杂的数据集中筛选你要的数据,从复杂的模型函数中操作数据,建立井然有序的图表来呈现数字,这些都只需要几行程序代码就可以了,打个比方,它就像是好动版本的Excel。

R最棒的资产就是活跃的动态系统,R社群持续地增加新的软件包,还有以内建丰富的功能集为特点。目前估计已有超过200万人使用R,最近的调查显示,R在数据科学界里,到目前为止最受欢迎的语言,占了回复者的61%(紧追在后的是39%的Python)。

它也吸引了WallStreet的注目。传统而言,证券分析师在Excel档从白天看到晚上,但现在R在财务建模的使用率逐渐增加,特别是可视化工具,美国银行的副总裁NiallO’Conno说,「R让我们俗气的表格变得突出」。

在数据建模上,它正在往逐渐成熟的专业语言迈进,虽然R仍受限于当公司需要制造大规模的产品时,而有的人说他被其他语言篡夺地位了。

“R更有用的是在画图,而不是建模。”顶尖数据分析公司Metamarkets的CEO,MichaelDriscoll表示,

“你不会在Google的网页排名核心或是Facebook的朋友们推荐算法时看到R的踪影,工程师会在R里建立一个原型,然后再到Java或Python里写模型语法”。

举一个使用R很有名的例子,在2010年时,PaulButler用R来建立Facebook的世界地图,证明了这个语言有多丰富多强大的可视化数据能力,虽然他现在比以前更少使用R了。

“R已经逐渐过时了,在庞大的数据集底下它跑的慢又笨重”Butler说。

所以接下来他用什么呢?

Python

如果说R是神经质又令人喜爱的Geek,那Python就是随和又好相处的女生。

Python结合了R的快速、处理复杂数据采矿的能力以及更务实的语言等各个特质,迅速地成为主流,Python比起R,学起来更加简单也更直观,而且它的生态系统近几年来不可思议地快速成长,在统计分析上比起R功能更强。

Butler说,“过去两年间,从R到Python地显著改变,就像是一个巨人不断地推动向前进”。

在数据处理范畴内,通常在规模与复杂之间要有个取舍,而Python以折衷的姿态出现。IPythonNotebook(记事本软件)和NumPy被用来暂时存取较低负担的工作量,然而Python对于中等规模的数据处理是相当好的工具;Python拥有丰富的资料族,提供大量的工具包和统计特征。

美国银行用Python来建立新产品和在银行的基础建设接口,同时也处理财务数据,“Python是更广泛又相当有弹性,所以大家会对它趋之若鹜。”O’Donnell如是说。

然而,虽然它的优点能够弥补R的缺点,它仍然不是最高效能的语言,偶尔才能处理庞大规模、核心的基础建设。Driscoll是这么认为的。

Julia

今日大多数的数据科学都是透过R、Python、Java、Matlab及SAS为主,但仍然存在着鸿沟要去弥补,而这个时候,新进者Julia看到了这个痛点。

Julia仍太过于神秘而尚未被业界广泛的采用,但是当谈到它的潜力足以抢夺R和Python的宝座时,数据黑客也难以解释。原因在于Julia是个高阶、不可思议的快速和善于表达的语言,比起R要快的许多,比起Python又有潜力处理更具规模的数据,也很容易上手。