在香港,有家日料店。这家店在很短时间内风靡全港,开了多个连锁店。很多市民都知道这家日料店的海鲜非常新鲜实惠,价格只有别家的七折。 我也曾经询问过这位大厨朋友,是什么能做到这么好的生意?
大厨神秘兮兮地问我“你有没有看到每个餐桌上的摄像头?那就是我们的秘密武器。”
原来,这家海鲜店每天都会通过摄像头,查看食客点餐、到餐的顺序,以及剩菜的种类分量。通过这样的盘点,这家餐厅的老板可以准确把握消费者的喜好,从而对北海道的海鲜预购量也相对精准。也正因为此,这家餐厅的货源流转迅速,成本也随之降低。
这是个有趣的案例。一家没有ERP系统的传统餐厅,通过摄像头实现了对采购的信息化管理:收集用户信息,分析进而用于第二天的采购决策,循环反复,以此降低生意成
对很多人而言,大数据只是一个流行词。在觉得数据距离自己业务很远的同时,传统企业又心生恐惧不知未来会怎样:哪种生意可以用上数据?数据可以解决哪些具体业务问题?
谁需要大数据?
美国一家有着百年历史的传统零售店,这家百货店六年前就开始大量收集竞争对手的价格数据。最近,他们除了做好了动态的定价引擎,还着手研究产品与人群匹配的自动化系统。在电商领域,我们可以将用户的认知分为三种:浏览者,购买者和消费者。传统百货店既不知道走进商店的人们都逛了哪些店(浏览数据),也不知道消费者在每个品牌店都买了什么商品(购买数据),用了什么银行卡买单,更不要说消费者购物完成后,他们的使用体验数据。
生产企业最痛的点,是我知道谁帮我卖,但不知道谁在买。对零售业这个问题变为:我知道谁在买,但不知道客人如何做决定的,更不知道他们用得如何,出了什么问题也不知道。这是因为旧有的模式,数据无法跟踪到门店之外,造成了生产和使用是脱节的。
但在大数据时代,生产企业可以利用社会化数据甚至传感器跟踪到用户的使用方式。产品出了什么问题,生产企业甚至能在用户感知之前,就了解到问题所在,并提供解决方案。
如果传统百货公司可以拥有这些数据呢?他们可以知道自己会员喜欢什么品牌,偏好什么样的付费方式,也可以向生产厂商下单,预购符合会员兴趣的商品。
数据可以帮助零售业对人群的需求与商品的供应快速有效率匹配起来,最大的价值就在这里。
当获取数据变得越来越容易的时候,企业就会发现,不用数据做决策就会失去很多机会。未来的每个企业都会成为数据企业,每个产品都会成为数据产品。因为里面的优化点都依赖于数据创新,数据会成为企业发展的驱动力。
资源有限怎么做大数据?
中小企业在数据化中最大的问题是资源有限,没有太多的资源可供试错,试错空间也很小。因此,中小企业应该收集关键信息,而不是收集所有数据。
你可以选择比较小的场景进行数据收集、分析。这个场景要满足以下条件:
1) 有没有所需数据?
2) 数据准不准确?
3) 数据的实时性如何?
4) 数据与算法的匹配
5) 如何从错误中学习, 数据回流能否起持续优化作用
最后的一个,是这些回流的数据能够改善我们之前的认知。就之前日本料理餐馆的案例而言,消费者的选择就是他们最关键的决策依据,所以可以优先收集这类数据。
而大数据,则是基于企业数据化基础之上的数据整合、算法创新和产品化。比如,谷歌地图之所以能告诉你前面的路堵车,其实是有赖于每个使用谷歌地图的位置分享的实时整合。所以我认为政府的推动,可以让小企业减少得到数据的门槛、增加业界的数据功用,这样就更有利于让小企业也享受到大数据的科技。从产业链来看,小公司联盟,把数据统一,用数据来解决一些业内彼此都不能解决的问题。
中小企业不容易像大公司一样有庞大的数据团队。因此,中小企业在运用数据的时候,一定要有更稳妥的办法,注重使用数据效益,可以尝试从小专案着手,再逐步拓展。