就阿里巴巴的业务而言,其通过其电商、支付、互联网金融、打车、“未来医院”计划等各业务线已经积累了庞大的数据。但要实现更全面的覆盖,这样的数据量显然不够。 张道生称,芝麻信用的数据来源可以分为三部分,一部分是阿里已有的数据;一部分是和公共服务(包括部分政府部门)对接的数据;未来芝麻信用也将推出一个用户自行提交数据平台,根据这些数据打分。
但在获取外部数据时存在两大问题,首先,外部数据如何提供,免费还是付费;第二,不同机构的数据类型不尽相同。
俞吴杰以国外为例称,收费和付费模式都有,此外还有一种资源互换,比如银行,一家银行向一家征信机构调取数据了,国外有一个互惠条约,银行必须把一些违约信息反馈给征信机构,否则征信机构就
不让银行调取数据,而对银行而言,如果不用征信公司的数据,成本非常高,本身是一种交换;此外,征信机构也会自己向水电煤机构采集,也有付费的,相对来说比较便宜。
对于数据类型,则需要通过技术的方式解决。
搜集数据之后,如何通过数据模型计算出用户的信用,这是征信机构也是用户最为关心的事情。张道生解释说,并非某个行为的变化就会引起用户芝麻信用分的变化,除非出现重大的违约事件,都是通过庞大的数据来计算的,因此并非你在淘宝上消费的越多,芝麻信用分就越高。同时,用户的违约记录会有一个保留期,如果期间信用记录呈正向,信用分也会提升。
他称,蚂蚁金服在互联网金融领域已积累多年,包括之前的微贷、天猫分期购、花呗等产品,背后都是通过大数据为用户建立了个人信用档案,因此微贷才能在一分钟内就能发放贷款。目前,一些银行已经承认蚂蚁金服的数据,在一些大额贷款方面,都会参考这些数据,合作的银行已有十几家。
使用场景和安全
1月28日测试首日,很多参与的用户均在朋友圈中晒出自己的信用分,但当个人信用真正建立起来后如何使用?传统的信贷可能依然是最大的应用场景,但除此之外,芝麻信用已将其推广到酒店、租车等各个领域。邓一鸣表示,最终还是希望能够将个人信用渗透到用户的生活中去。
邓一鸣提出几种信用不足情况的方式,押金、预授权、担保。而一旦个人信用建立,在某些场景下,这些方式将被取消。据了解,目前芝麻信用已经和阿里旗下旅游品牌去啊合作,在3000家酒店使用芝麻信用分,满600分即可无需缴纳押金;同时和神州合作的租车也即将上线,只要芝麻信用分达到一定级别,将无需动用预授权。
他还以出国签证和招聘为例,出国做过签证,银行需要冻结一部分资金,但如果个人信用建立起来后,根据信用就可办理;招聘中,很多公司会做背调,本质上就是一个信用中介的概念,而个人信用也可以做这种中介化的事情。邓一鸣认为,未来最有意思的一个应用是分享经济,包括PP租车(拼车)、PP租房、人人快递等。
值得注意的是,个人信用档案一旦建立,也意味着每个用户的数据将集中到一起,如何保障数据安全可能是未来最大的挑战。俞吴杰表示,有了数据,有了计算方法,但个人征信重中之重还是安全,因为个人征信涉及到的是每个个体,所以隐私保护、数据安全成了最重要的。
他称,在阿里同样的数据是留在不同地方的,一个地方出现任何问题,另一个城市的机器可以重启。物理安全是门禁,两道门禁,两路通电,保证业务完整。还有自己的网络服务,防止黑客攻击。而对于信息本身,也是有分级的,从信息安全自身角度考虑,分了很多层,第一,银行卡信息相关的,绝对是最顶端的,最重要;第二;消费信息;还有脱敏的数据,不指向任何一个人,就是群体信息。在信息传输和保存方面都是经过完整的加密技术,针对于信用相关的,必须有专项保护,怎么样才能授权,让哪些人看,这个是很重要的。
市场化的大规模个人征信已经起步,但对于征信机构而言,如何系统性的搭建起如此庞大的模型,输出产品,依然需要时间;而对于用户,接受和使用个人信用也将面临一个长期的普及过程。