大数据征信对中国征信业的启示
ZestFinance最初的服务对象是只能使用高利贷的人群(称为借贷日贷款人群),通过大数据挖掘出他们的信用信息,帮助他们享受正常的金融服务。ZestFinance假定每一个消费者都是“好”人,希望通过搜集证据,证明信贷信息不完整人群的真正的信用状况,进而帮助他们实现享受正常金融服务的权利。
相比而言,目前国内的信用风险管理,惩罚性太强,一种类似“有罪推理”的思路大行其道,这种方式可能简单有效,但是并没有把征信的作用全面发挥出来。征信的真正作用不仅仅是惩戒失信,更重要的是褒扬诚信。ZestFinance为所有的消费者挖掘信用,用科技的力量推动普惠金融的发展,打破信贷机构为富人服务的怪圈。
定位于特定的服务人群也是ZestFinance成功的关键。ZestFinance的主要服务对象是约占人口5%的、信用评分在500分以下的次级贷人群。通过对这部分消费者的深入理解,筛选大数据描述信息,所开发的也是针对这部分人群有效的信贷审批模型。在机器学习领域没有特别通用的分析模型,但是往往有对特定范围内有效的模型。所以,合理地定位服务人群和深入理解服务对象是开发征信分析模型乃至开展征信服务业务成败的关键。
另外,ZestFinance优于其竞争对手和传统信贷机构的一个重要的原因是强大的信用评分模型的开发能力:基于多角度学习的预测模型,模型及时更新而且不断细化。相比而言,中国的信贷审批,或信用风险管理,层次不齐,从定性判断到简单的量化决策都有,总的来说量化分析不足,而且征信机构的信用评分还未推出。只有加强对量化的信用风险分析技术研发投入,才能真正实现对消费信贷的专业风险管理。同时,值得强调的是,大数据时代,没有现成的免费午餐,数据和模型需要提炼,需要数据科学家的人工参与,即使把ZestFinance的模型拿到中国来,也不能直接用。对数据和消费者的理解和数据挖掘技术的掌握都是建模过程中不能省掉的功课。
(本文仅代表作者个人观点,与所在单位无关。)