车品觉:“数据化”是未来企业生死的课题

数据1.0 自身业务产生什么数据,我们用什么数据做分析优化;

数据2.0 将现有数据与自己的历史或上下游数据交叉,由此优化数据;

数据3.0 就是购买外部数据或者将自己的数据分享出去,数据是互溶共通的,在交融中,产生新的产品体验。

这三层境界,都需要企业有不同的技术和架构去实现数据的提炼、加工和产品化、整合。这其实是一个不断用数据来描述和还原企业业务的过程。

最近,阿里数据团队成功地提升了快的打车的打车成功率。我们就叠加了数据的一次使用和二次使用.

我们将实时数据与历史数据整合。原来APP在发送打车需求的时候,是以打车人的地理位置为原点,每过几分钟扩散到附近300米,600米的出租车。这个消息的推送是以地理位置为推送逻辑的。

但是假如附近的司机其实并不想去目的地,接单的成功率就会降低。因此,我们把司机“优先目的地”这个数据加入推送系统中,就重新优化了数据,让更愿意接单的司机“可视度”更高了。也因此提高了整体的接单成功率。当然前面所说只是优化的其中一个点子。

在我看来,所有的数据产品都是与决策相关的。也因此,数据优化的应该溯源于人或者机器中分析决策的每个环节,不断更新你的锚点。

打破一个决策,首先要知道人们如何决策,以及有了新数据又如何改变决策。这两者间的区别是什么?会带来什么价值?大决策往往是由一连串的小决策组成的。

比如快的打车APP提高效率的关键点,在于如何让司机的数据与用户的数据关联,同时如何不断交叉比对历史数据,找到最高效的匹配。

这其中最关键的是如何衡量数据回流的效用,在动态中,找到新的锚点。

如今传统企业已经到了必将需要融入互联网之中的时刻,这个时候实时数据就是你的新数据资料。当中的能力最为关键的是对实时数据的还原、提炼,并为企业所用。

这就是一个“数据”持续优化决策的过程——看清楚“你自己”的动态过程。

via:阿里商业评论