本篇投稿来自PL Data公司创始人王圣捷,她是名全球科技人类学家,也曾是IDEO上海的一名驻地专家。
当前,全世界各种规模的公司都在被告知需要大数据 —— 大数据是驱动下一轮创新的源动力。风投公司专门确立针对大数据的投资组合,初创公司对外宣称自己是“大数据”公司,成熟的巨头企业会成立专门做大数据项目的数字创新团队。面对先进的计算数据收集和分析能力,许多初创公司和大型企业不惜以牺牲人的洞察为代价,过度地专注于收集定量数据。这种把定量数字凌驾于定性洞察之上的做法着实令人担忧。我就曾亲眼见证了一家公司为此遭受到的重大影响,没有任何一家公司会希望遵循这种做法。
2009年的时候,我在诺基亚做调研工作。诺基亚是当时新兴市场最大的手机公司。我在研究中发现,这家公司在整体商业模式上正面临挑战。经过多年在中国的人类学研究工作,不论是与外来打工者一起生活,体验街头小贩的辛酸苦辣,还是沉浸在网吧世界,这些都让我看到了大量的市场信号,我有理由相信,低收入消费者已经准备好为更昂贵的智能手机买单。
当时我的结论是,诺基亚必须转变他们当前的产品开发策略,从制造价格昂贵、面向精英用户的智能手机,转而开发价格适中、面向低收入用户的智能手机。我把我的研究报告和相关建议汇报给了诺基亚总部。但诺基亚在看过我的研究发现后却不知道该怎么做。他们说,我的样本量只有100个,和他们成百上千万的样本量相比,简直就是微不足道。另外他们还说,根据他们现有的数据资料,我的洞察发现根本就没有任何根据可言。
当然现在,我们所有人都知道诺基亚后来发生了什么。微软在2013年收购了诺基亚手机业务,目前它的全球智能手机市场份额仅占3%。诺基亚的衰落是由很多原因导致的,但其中最严重的原因之一,也是我亲历的一个原因就是,诺基亚过度依赖数字。他们过于注重定量数据,以至于在面对难以衡量或现有报告里没有的数据时,就变得不知所措。原本可以成为诺基亚的竞争筹码,最后却帮了一个倒忙,导致它走向衰亡。
自从诺基亚的那次工作经历以来,企业组织这种过度重视定量数据而忽略定性数据的做法就一直让我感到非常不解。随着大数据时代的崛起,我发现这种情况开始愈演愈烈,一些公司不惜扣减花在以人为本调研上的预算,而宁愿花重金投资在大数据技术上。人类学定性研究工作在大数据时代下的生存现状让我深感忧心。
在当前这个以数据为驱动的世界,人类学研究工作(经常以市场调研、设计调研和定性调研的形式在行业里出现)正面临一个非常严重的认识误区。经常会听到人们谈论说,人类学研究的数据样本量太小,人类学研究数据是“小数据”,就像当时诺基亚高层说的一样。
由于缺少概念性文字来快速界定人类学研究在大数据时代的价值,自去年开始我一直在用“厚数据”(在此向Clifford Geertz致意!)这个词来表示我对综合性研究法的提倡和支持。厚数据是指利用人类学定性研究法来阐释的数据,旨在揭示情感、故事和意义。厚数据难以量化,但能从少量样本中就解读出深刻的意义和故事。厚数据与大数据截然不同,定量数据需要依赖大量的样本,同时借助新技术来捕捉、存储和分析数据。要让大数据变得可分析,它就必须经过一个正常化、标准化的定义和归类过程,这个过程会在无形之中剔除数据中所包含的背景、意义和故事。而厚数据恰恰能防止大数据在被解读的过程中丢失这些背景元素。
“厚数据是指利用人类学定性研究法来阐释的数据,旨在揭示情感、故事和意义。”
整合大数据和厚数据能让企业站在全局的高度,更全面、更彻底地把握任何情形。企业要纵观全局,就必须同时运用大数据和厚数据,从中获得不同类型的洞察,获得丰富的广度和深度。大数据需要借助大量样本来揭示特定模式,而厚数据只要借助少量样本就能从深层次解读出各种以人为本的模式。厚数据依赖人的学习活动,而大数据依赖机器的学习活动。厚数据体现着各种数据关系背后的社会背景,而大数据体现的是从一系列特定定量数据中提炼出的洞察。厚数据技术能包容不可化约的复杂性,大数据技术则是通过分离变量来明确模式。厚数据缺少广度,大数据缺少深度。