大数据离不开“厚数据”

运用大数据存在风险

企业组织在运用大数据时,如果没有一套整合框架或权衡尺度,那么大数据就会变成一个危险因子。Steven Maxwell指出:“人们过度沉迷于数据信息的量,却忽略了‘质’的部分,也就是分析法所能揭示的商业洞察。”量越大并不意味着生成的洞察就一定越多。

另一个问题是,大数据往往过于注重定量结果,而贬低了定性结果的重要性。这就会导向一种比较危险的看法,即认为经统计分析得出的标准化数据要比定性数据更有用、更客观,从而进一步肯定了定性数据就是小数据这一观点。

以上两个问题导致企业组织几十年来仅仅凭借定量数据来做管理决策。一直以来,企业管理咨询顾问都是利用定量数据来让提升企业的运作效率和赢利。

利用大数据的风险在于,企业和个人会开始依赖运算法则,把它作为衡量标准来做决策和优化表现。

如果没有一种平衡力量,大数据很可能会导致企业和个人总是依据从运算法则得来的标准来做决策和优化。在这个优化过程中,包括人、故事、真实的体验在内的一切都会被忽视。正如Clive Thompson写道的:“把人的决策因素从这个等式中抹去,就意味着我们会与深思熟虑的做法渐行渐远,而这些深思熟虑的时刻恰恰是我们从道德层面反思自己行为的机会。”

释放大数据与厚数据的整合效应

大数据产生的信息量实在太过庞大,以至于不得不借助其他方式才能填补和/或揭示知识缺口。而这恰恰是人类学研究工作在大数据时代的价值所在。下面,我会分享一些有关企业如何整合使用厚数据的方式。

厚数据是勾勒未知世界的最佳方式。当企业组织想了解他们并不了解的领域时,就需要厚数据的帮助,因为它能带来大数据所没有的东西——灵感。收集和分析故事有助于生成洞察。

当企业组织想要了解并不熟悉的领域时,就需要“厚数据”的帮助,因为它能带来大数据所无法带来的东西——灵感。收集和分析故事有助于生成洞察。

故事能激发企业组织探索通往目的地的不同途径,这个最终目的地就是洞察。打个比方,假设你在开车,厚数据能让你瞬间移动到想去的地方。厚数据常常会带来一些意料之外的发现,既让人困惑又让人惊喜。但不论怎样,它都能带来灵感启发。只有在富于想象力的企业,创新才能赖以生存。

当企业想要与利益相关方建立更稳健的关系时,他们就会需要用到“故事”。“故事”包含着情感,而这是经分析过滤的标准化数据所不能提供的。数字无法折射出日常生活中的各种情感:信任、脆弱、害怕、贪婪、欲望、安全、爱和亲密。很难用算术法则来表示一个人对服务/产品的好感程度,以及这种好感会随着时间变化而发生怎样的转变。相对地,“厚数据”分析法能深入人们的内心。毕竟,利益相关方与企业/品牌的关系是感性的,而不是理性的。

厚数据和大数据的未来整合机会点

大数据概念的提出者Roger Magoulas强调了故事的必要性:“故事能很快传播开来,把数据分析法的经验教训扩散到企业组织的各个角落。”

仅仅使用大数据会带来问题,关键是要懂得如何同时利用起大数据和厚数据,让两者相辅相成。对于定性研究者来说,这是他们在以定量结果为主导的大数据时代定位自己工作性质的绝佳机会。像Claro Partners 这样一些公司甚至已经开始重新界定我们如何问有关大数据的问题。在他们的个人数据经济(Personal Data Economy)研究中,他们并没有问大数据对人类行为的启示这类问题,而是反过来问了人类行为对大数据在日常生活中的作用的启示。他们还为客户开发了一套工具,帮助他们转变思维视角,“从以数据为核心转变为以人为核心。”

有关大数据和厚数据如何在企业组织中发挥协同效应,我梳理了以下机会点(当然并不仅限于这些):

健康医疗

随着个人能越来越方便地追踪自己的健康状态,自我量化值正在成为一种主流。医疗服务提供者会有越来越多的机会收集到各种匿名数据。像Asthma Files 这列项目可以让你迅速展望厚数据和大数据将如何共同解决全球健康问题。

重新定位来自移动运营商的匿名数据

全球各地的移动公司已经开始重新包装和出售他们的顾客数据。市场营销者不是唯一的买家。城市规划者正在用Air Sage的蜂窝式网络数据来了解当地的交通状况。为了保护用户隐私,这些数据会采取匿名或抹去个人通信记录。当然,没有了关键的个人详情,数据也就丢失了关键的背景信息。在这种情况下,若没有厚数据,企业就很难破译这些因个人信息被抹去而丢失的个人情况和社会背景,也就无法真正解读数据。