传统银行的转型实战:看工商银行如何利用大数据洞察客户心声?

客户意见挖掘业务价值

大数据

这些技术提升点之后就能在打响的文本反馈当中发现客户的热点意见集中在哪些方面,如果我们能够对这些客户所反映的共性问题主动发起一些措施,优化我们的业务流程,可以提升我们的客户满意度和客户忠诚度,而另一方面这些来电的投诉量会进一步的减少,也就从另一方面降低我们的服务成本,减少了二次被动的服务投入。

案例分析

大数据

今天想分享两个具体的案例,一个是对95588客户服务的一些工单如何做到客户意见挖掘,这个是从无到有的设计和探索的全过程;第二个案例当中会介绍一下如何聆听在互联网上传播的客户的心声。

客户意见发掘——业务目标

大数据
通过95588服务热线记录大量的客户反馈的文本,拿到一堆文本之后怎么切入客户的意见挖掘呢?最重要的是先对客户做分类,结合业务的处理流程设计这么一套适用于银行客户意见的分类体系,当有投诉过来的时候就知道他所说的是关于自助服务的还是银行卡、还是关于网点服务的。这样我们就能分析各个类别里不同的发展趋势并且进行有效处理。

但有了意见分类还不够,我们知道哪一类的意见是最多的,我们尝试性做热词分析,文本由大量的词汇构成的,我们想看一下在这么多的客户反馈文本当中大家提到哪些词汇,从中提取客户说的最多的、最频繁使用的词汇,用可视化的方式生成一个词语。

大数据
从这个图上我们就能看到有一些效果,包括像工作人员、机具、查询、词汇等等凸显出来。在这个图上所反应的信息不够精准,我们只知道有一些关于工作人员的评价或描述,但是不知道工作人员到底出现什么问题,我们的自助机具到底是故障比较多还是客户不会用。同时这个图当中还存在多词疑义的问题,工作人员和柜员两个词说的是类似的问题,这对我们造成干扰。

大数据
如何精准概括客户意见?我们提出统一的、概括的用户观点的表达方式,就是对象、属性、评价三元组的形式。下面这个例子有四句话:柜员说话口气非常差。今天在柜台办业务,里面的人态度很差;柜员脾气不好,柜员语气很不耐烦。用我们的属性评价方式概括就是“柜员态度不好”。

有了这样的方式之后对刚才的词云做分析,发现刚才的词云已经演变成了意见云,这些意见都是指向非常明确的比较精准的,比如说网银跨行汇款不成功,短信余额变动不能接收,网点效率低,网点排队时间过长,相信大家对这些问题也并不陌生,在有了这个图之后我们的分析师就能够比较直观的了解最需要去改进的问题,客户的意见都聚集在哪些方面。

客户意见挖掘——模型建立

有了刚才的这些设计方式之后,我们可以怎么样选择最贴合我们业务场景的分析方法,刚才我们首先提到了需要对文本做自动分类,我们最容易想到的就是朴素贝叶斯,它可以计算一篇文章属于哪个类别的概率最大,可以完成分类。

大数据
但是进行实际分析和尝试的过程当中发现这样一个典型的算法,在我们的实际业务场景上其实并不是特别的适用,首先我们缺少训练数据,因为我们这一套意见类别的分类体系是新建的,历史上并没有积累好数据,如果我们重新去标注呢,这些意见类别又特别多,有的类别层次又比较深,所以很难在比较短的时间内完成高质量的标注。