美丽的数据:数据可视化与信息可视化怎么搞?

3.数据被遮盖

数据可视化
(确保数据不会因为设计而丢失或被覆盖。例如在面积图中使用透明效果来确保用户可以看到全部数据。)

4. 耗费用户更多的精力

数据可视化
(通过辅助的图形元素来使数据更易于理解,比如在散点图中增加趋势线。)

5.柱状过宽或过窄

 

(经过调研,柱子的间隔最好调整为宽的1/2。)

6.数据对比困难

数据可视化

(选择合适的图表,让数据对比更明显直接。上图的数据作用是为了比较,显然,柱状图比饼图在视觉上更易于比较。)

7.错误呈现数据

数据可视化
(确保任何呈现都是准确的,比如,上图气泡图的面积大小应该跟数值一样。)

8.不要过分设计

数据可视化
(清楚标明各个图形表示的数据,避免用与主要数据不相关的颜色,形状干扰视觉。)

9. 数据没有很好归类,没有重点区分

数据可视化
(将同类数据归类,简化色彩,帮助用户更快理解数据。上图的第一张没有属于同类型手机中不同系统进行颜色上的归类,从而减少了比较的作用。下图就通过蓝色系很好的把iPhone,Android,WP版归为一类,很好的与iPad版,其他比较。)

10.误导用户的图表

数据可视化
(要客观反映真实数据,纵坐标不能被截断,否则视觉感受和实际数据相差很大。左图的数据起始点被截断从50开始。)

信息可视化案例

信息可视化囊括了数据可视化,信息图形,知识可视化,科学可视化,以及视觉设计方面的所有发展与进步。下面是信息可视化的案例分享。

关系网——基于60000封电子邮件存档数据,用不同颜色深度的线条呈现了地址簿中用户和个体之间的关系,比如回复、发送、抄送。)

数据可视化

(上图通过数据化的比较,用变形的柱状图等图形,形象的展示了不同国家老师的收入水平,社会包括学生和公众对其的尊重度。)

数据可视化
如何制作信息可视化?

第一步:确定表意正确明确信息图表达内容,确定最主要的表现内容。

第二步:优化展现形式内容正确还不够,还要易懂。我们需要在这个步骤里寻找信息图最优表现形式,让读者 一目了然,降低理解难度。

第三步:探索视觉风格在探索视觉风格时要注意抓大放小,先定下来最主要模块的风格,再做延展。

第四步:完善细节视觉风格确定后,可根据需要添加、完善细节。

第五步:风格延展“一致”的视觉设定有助于用户理解,也能更好的提升品牌形象。所以主风格确定后,我们需要把它延展到其它有需要的页面上。

以上是分享了数据可视化和信息可视化相关内容,不过信息可视化和数据可视化是两个容易混淆的概念,基于数据生成的数据可视化和信息可视化这两者在现实应用中非常接近,并且有时能够互相替换使用。但是这两者其实是不同的,数据可视化是指那些用程序生成的图形图像,这个程序可以被应用到很多不同的数据上。信息可视化是指为某一数据定制的图形图像,它往往是设计者手工定制的,只能应用在那个数据中。信息可视化的代表特征:具体化的,自解释性的和独立的。为了满足这些特征,这个图是需要手工定制的。 并没有任何一个可视化程序能够基于任一数据生成这样具体化的图片并在上面标注所有的解释性文字。