马云和小贝选谁做老公?写给非数据人的数据世界入门指南

码了这么多,休息一下,给你们放张图:

大数据可视化

当时小贝和马云一碰面,无论在阿里还是网络上,都出现了一个两难的问题:到底是选谁当老公呢?(能有这个问题的妹子,你真想多了……),其实这里仔细分析,无非也是涉及到维度和度量两词:

  • 维度:人啊。
  • 维度成员:马云、小贝
  • 度量:众位妹子和弟弟们无非就是按自己心目中的算法给两位成员计算颜值、财富,以及自己心目中的权重,衡量一个综合指数了……我可不敢随便填。

最后,发现两难的选择,只能得到一个结论是:左边的当老公,右边的当爸爸。

点评:做梦吧您。

总结一下:

两个词的应用:无论你听怎么复杂的需求,以及无论你有多么复杂的需求,请有倾向地提炼这两个词,因为这是你做数据产品、数据分析或者可视化设计的基础的基础:

大数据可视化

翻了自己的电脑半天,终于翻出一个不敏感的文档,供参考,下图就是移动数据分析中的需求交付模版之一:左侧列举度量,右侧标注出此度量需要看的维度,有时还会注明维度之间是否要交叉组合查询。不展开。

大数据可视化

2. 一个立方体

其实本文的精华就在两个词之间了。下面您看不看都成。

大数据可视化

立方体在数据的世界里叫做Cube。我想为何有立方体这个概念,应该是它很形象地能够表达出多维的概念,至少有3维,如上图所示,成交100亿的金额,是一个大立方体的总量。如果按季度、行业、地区三个维度来分析,我们可以清楚地知道第三季度A地区女装行业有多少——也即我用橙色标注的那一个切块的量,是吗?

那如果是我要知道B地区女装行业四季度的成交总和呢?你怎么切给我?

空间感好的同学已经知道怎么切了,你知道吗?

大数据可视化
这只是切块。我们还可以切片,比如我想要知道B地区所有行业的四个季度的成交总和,怎么切?我想要知道男装行业所有地区四个季度的成交总和怎么切?

具体怎么切,你们自己意会吧,篇幅有限,不展开。

现实分析场景中,恐怕不只三个维度,比如还要加上销售部门维度、销售渠道维度呢~ 那么立方体可就复杂了,空间感差一些的同学,就想想不出来这个立方体什么样子了吧,事实上,数据开发同学会用雪花模型或者星型模型去建设这些立方体。你只要有这个立方体的概念就可以了……数据分析就是像玩魔方一下,拨弄着这些立方体。

在网上找了一个包含了我刚才说的钻取、汇总的概念的立方体再给你们感受下,想要详细学习的同学可以搜索“数据立方体”继续研究。

大数据可视化
我刚才举的那几个切块、切片的案例有毛用啊?

现实生活中,你提需求的时候,不可能让你画个立方体吧?是的,我们是以表格的方式去看数据的,比如第一个切块,是什么表格呢? 站在行业负责人,尤其是女装负责人的视角,可能是这样的一个报表:

大数据可视化

当然,如果是某地区销售经理,有可能是这样的:

大数据可视化