大数据实际上是营销的科学导向的自然演化。
大数据思维有三个纬度——定量思维、相关思维、实验思维。
第一,定量思维,即提供更多描述性的信息,其原则是一切皆可测。不仅销售数据、价格这些客观标准可以形成大数据,甚至连顾客情绪(如对色彩、空间的感知等)都可以测得,大数据包含了与消费行为有关的方方面面;
第二,相关思维,一切皆可连,消费者行为的不同数据都有内在联系。这可以用来预测消费者的行为偏好;
第三,实验思维,一切皆可试,大数据所带来的信息可以帮助制定营销策略。
这就是三个大数据运用递进的层次:首先是描述,然后是预测,最后产生攻略。
一切皆可测:迪士尼MagicBand手环
美国迪斯尼公司最近投资了10亿美元进行线下顾客跟踪和数据采集,开发出MagicBand手环。游客在入园时佩戴上带有位置采集功能的手环,园方可以通过定位系统了解不同区域游客的分布情况,并将这一信息告诉游客,方便游客选择最佳游玩路线。此外,用户还可以使用移动订餐功能,通过手环的定位,送餐人员能够将快餐送到用户手中。利用大数据不仅提升了用户体验,也有助于疏导园内的人流。而采集得到的顾客数据,可以用于精准营销。这是一切皆可测的例子,线下活动也可以被测量。
一切皆可连:网上订餐追踪系统
一家做订餐配送的互联网企业,在送外卖的自行车和汽车上安装一套软件和追踪系统,从配送外卖中采集了大量数据,如谁订了什么外卖、经过什么路线、到了谁的家里……而通过对数据的分析,可以得出哪家餐馆的什么外卖比较受欢迎,最快捷的路径是那一条等,在此基础上为商家提供备料建议,并规划一条合理高效的送餐路线。利用分析表面看似无关联的大数据,公司能够提供优化餐馆运营的增值服务。
一切皆可试:电商页面推荐功能
电商购物中,商品页面的其他产品推荐是个重要的功能(例如“买过该商品的人还买过XXX”)。如何量化和优化推荐功能的效果?有研究机构做了这样一个测试:按顺序向用户推荐全部/屏蔽部分推荐/屏蔽所有推荐,经过一个月测试之后,跟踪被测试对象的购买情况,发现不屏蔽推荐的短期效应最高,购买量最多。而屏蔽所有推荐的效果要优于屏蔽部分推荐。而原先购买过商品的消费者在被屏蔽推荐之后,商品的销售额下降更快,因而可以得出推荐功能对有忠诚度的客户作用更大。更有趣的是推荐功能的长期效果。研究发现,不论首次购买过程中用户是否购买了推荐商品,第二次的访问情况都遵循这一规律:未被屏蔽推荐的顾客中,10%的人会再次访问,被屏蔽推荐的访问率是9%,而实际转化成访问的次数是8%,如果再结合老顾客推荐效果会更好,最后会产生超过10%的营收提高。总体看来,推荐的效果更可观。
从描述到预测,再到产生攻略
社交网络分析跟踪,将消费者社交网络上的关键词频率转化为可视化表达,对消费者进行分类,进而做针对目标客群的精准营销,这是大数据营销的描述阶段。
预测阶段的案例是对信用卡使用情况的研究。原先每家银行只能看到消费者的本行刷卡记录,银行据此消费记录对客户实行奖励。其中存在的问题是,客户使用非本行信用卡的消费情况无从知晓,银行无法了解客户的实际消费情况,哪些是隐藏的“消费大户”。解决这一问题的难点在于,他行的数据记录很难获得,因此研究机构就使用第三方零售商调研的数据,通过建立模型,将两种数据融合,再对消费者的实际消费情况进行预测。模型中原先可能年消费只有2000-3000元的消费者,实际消费达到了4万,这些人成了非常有潜力的银行客户。
在攻略阶段,银行可以根据预测结果调整客户奖励政策,例如给年均消费3000元的客户提高返点,或者提供更丰富的积点兑换产品等,使这部分人群变成银行的忠诚顾客。