印度数据挖掘大牛Soham Sinha:我热爱大数据分析的6个原因

原文作者,Soham Sinha,他是Crayon data的一名数据挖掘工程师,并且在多家国外科技媒体拥有自己的专栏。

本文由36大数据翻译组-Teradata大数据分析实习生郑晔星 翻译,并授权36大数据转载。感谢Teradata及Teradata员工对36大数据的支持。本文拒绝不标明出处的转载,转载必须获得译者以及本站的同意。

必须承认,一开始我在印度理工学院罗克分校学习工程学时,我还没有关注大数据分析。起初我还是一张白纸,把课程学得一团糟。很快我便对我的常规课程失去了兴趣,取而代之的是开始参加其他项目。我参与的第一个与处理大数据有关的活动是美国运通组织的一场竞赛。由于我对这个活动一见钟情,我甚至从事了清理数据这一差事。不久,我便沉浸在学习编程语言和编码中。今天,我很幸运地说,我找到了我的激情所在,我做的是自己热爱的事情——在Crayon data 做一名数据挖掘工程师。

Soham Sinha

我为何会宣称这是我的事业?让我来告诉你。

1.做出有根据的决定

我不是一个果断的人,我不喜欢基于自己的直觉做出决定,因为我是一个情绪化的人!一天一个样,有时候甚至完全不同。然而数据从来不会说谎。数据分析能让你做出有根据的决定。

2.学习新的(编程)语言

我常常对编程语言感到着迷,从大学期间直至现在,我一直用C和C++进行编程,但作为一个数据挖掘工程师,我需要了解更多的编程语言。目前,我正在学习R,R十分有趣。编程促使我去思索一些方法以便于去解决十分复杂的商业难题。除此之外,我还喜欢创造给人们使用的工具。只需要敲敲代码,或是按按开关,然后忽然有许多人在使用我创建的APP,这是一件十分有趣的事。我计划在学习R语言之后开始学习Python,因为这两种语言是数据科学领域里最受欢迎的编程语言。

3.深入数据库

一个数据挖掘工程师应当知道如何从数据库中查询和提取数据。当前,我使用HiveQL查询和管理存储在庞大的分布式存储系统中的数据集。到目前为止,我仅仅熟悉SQL,我还想学习更加流行的数据库MongoDB。

6

图:数据库受欢迎程度

4.预测分析的力量

预测分析借助了统计学、机器学习、数据挖掘和模型去分析现在和过去的数据,从而对未来做出预测。通俗地讲,预测分析给予渺小的人类一些力量去预测未来,就像诺查丹玛斯和伟大的康奈克 (但不显得滑稽)。能够预测出谁会点击,购买,撒谎或是死亡,这简直是太有意思了。

5.拥有机器学习与统计学的经验

数据挖掘是应用机器学习和统计学技术去解决一些具体的问题的领域。每一个新的项目都会涉及到不同领域。这给予了我机会,使我能够在不改变原有工作的基础上,发现和学习新的领域。我最近对深度学习有兴趣。深度学习是关于使机器进行学习的,这令我十分兴奋!

6.最重要的是,给家人和朋友留下深刻印象

数据科学家被哈佛商业视角列为21世纪最性感的职业。其中包含了近期对大数据和数据科学过多的炒作。当我告诉我的朋友们我从事数据分析工作时,他们会很好奇而且想了解更多,比如:我使用什么工具,我工作的范围,我的报酬等等。人们询问”我怎样才能从事大数据分析?”时 ,感觉棒极了。

现在,你知道是什么驱动我热爱数据分析。是的,我是一名狂热的数据分析爱好者,以后也不会改变。所有发布这类信息的文章的人们,最终都会燃起我学习的欲望,学习更多知识,让自己变得更富有创造力和创新性,尽力做最好的数据分析师。至此,我必须向他们说声谢谢。

本文来源于Crayon Data.