算法、技术及其它

程序员应当破除对技术不切实际的幻想——这不是说技术不重要,而是说要实事求是的分清,哪些是造狗窝的工作,哪些是建普通楼房的工作,哪些是造摩天大楼的工作。

再谈算法

同理,算法工程师应当破除对算法不切实际的幻想,把注意力集中到数据的理解、清洗、预处理、人肉特征、业务应用(而这些往往和屌丝、苦逼等形容词联系在一起)上来。

未来,机器学习工具将更加标准化、平台化、通用化,并且进一步降低使用门槛。与算法本质无关的工程细节,比如数据存储方式、梯度下降过程、并行化、分布式计算等,将被制造“轮子”的程序员们屏蔽。算法工程师可能只需用类似Hive的方式,写几个类似SQL的语句就可以完成模型的训练、交叉验证、参数优化等工作。

而机器唯一不能替代的就是对数据的理解,这是算法工程师存在的价值。而数据是和业务强相关的,算法工程师将更加接近产品经理的角色,而不是程序员。深入理解数据、业务和产品,寻找模型和它们的结合点,将成为算法工程师的核心竞争力。

插一句,相对于本文的观点,Deep Learning在某种程度上是一种的例外。它试图解决特征工程的问题,也就是在某种程度上代替人提取特征。当然,它还比较初级,另外它最多只能解决特征变换问题,仍然处理不了数据清洗和预处理中需要用到领域知识的情况。

这里刘同学提出一个问题,那就是算法工程师对算法需要理解到何种程度?事实是,即使从算法的应用出发,工程师也需要掌握模型的优缺点、适用场景、模型选择、参数调优等技术。这是毫无疑问的,从这一点上说,算法工程师需要一定的技术能力,这点又和产品经理不同。

但是这就有另外一个问题:模型选择和参数调优技术,是否是通用的?还是和具体的数据高度相关的?比如,是否存在这样的现象,同样的调优技术,在(比如说)电商数据上表现很好,到了社交数据上就不行了?这个问题我暂时没有答案,如果谁知道,请告诉我。不过,一个现象是,目前做机器学习模型相关的项目,在改进的时候,基本上都采用试错的方式,就是先做出改动,然后上线观察效果;如果不好,就换种方法;如果效果有所改进,也往往没有人知道为什么。如果存在一种通用的判断模型优劣的技术,我们为什么还要采取这种近乎穷举的方式呢?

从“IT精英”到“IT民工”或者“码农”,这种称呼上的转变并非笑谈,而是真实的反应了计算机编程领域门槛逐步降低的过程。所以,我们应当给听上去高大上的“算法工程师”或者“数据科学家”起一个类似的外号,比如“数据民工”、“机农”或者“蒜农”之类,以免不明真相的孩子们被“高大上”的称号吸引而误入歧途。

其它

看的出我是一个比较纯粹的技术人员,因为对于非技术的东西,我了解不够,说不出那是什么,只能用“其它”一词概括。

这“其它”,基本上是“人”的问题——比如前面提到的“如何推动自己的想法”,“软实力”之类,大的包括机遇,小到“发邮件应该抄送给谁”这种细节。

当然,如果你是个对技术本身感兴趣的人,这些讨论不适用,因为对于这类人,技术本身就是目的,不是手段。这里的视角,仅仅是社会普遍意义上的职业发展角度。无论是想在公司内部获得升迁,还是通过跳槽而得到晋升,还是自行创业而实现人生目标,技术都只是你的一种技能。如果再想想大部分公司里提供的是一份“造狗窝”级别的职位,这种技能起的作用又有多大呢?

不过多说一句,要求程序员“对技术感兴趣”,甚至“在业余时间以写代码为消遣”,是一种相当荒谬的事情。试想,招聘销售人员的时候,从未有人要求求职者“对喝酒应酬感兴趣”;招聘财务人员的时候,也没有人要求“对加减数字感兴趣”;招聘外科医生的时候,也绝不会要求“平时以解剖人体为消遣”。为什么程序员这种职业就要搞特殊?

究其原因,大概是大家还沉浸在对技术的一种非理性崇拜之中(当然崇拜和亵渎往往并存)——“技术改变世界”这句话常常被提到。这句话没错,但是要搞清楚,“技术改变世界”不等于“每一项技术都能改变世界”,更不等于“每一个技术人员都能改变世界”。其实,程序员这一行和其它任何一个需要专业技能的行业没什么区别,只是一种谋生的手段而已。