然而,大数据平台的准确定义至今仍未有定论。广州工业大学大数据战略研究院副院长谢卫红告诉记者,与数据分析、数据应用不同,大数据平台是随着大数据产业兴起而诞生的新兴事物,目前还没有官方定义。大数据平台的数据规模和具体功用,都还有待界定。
21世纪经济报道记者采访发现,当下市面上所谓的平台主要有两类,一类是通过各种渠道搜集、整理数据,并为数据应用企业提供有偿数据的数据交易类平台;一类是为了处理企业内部生产运营中产生的海量数据,以存储、运算、展现这些数据为目的的数据处理类平台,其工作内容包括了数据的输入、导入、分析以及加工。
在整个大数据生态中,大数据平台处于行业中上游位置,是进行数据分析和应用的基础。其中,大数据交易平台由于数据权属和交易规则尚未制定的缘故,发展相对滞后,基本都是2014年后开始投入运营;大数据处理平台则开发较早,商业化程度相对较高。
目前,大数据处理平台的服务对象以企业为主。除了一些中小型的创业公司,一些大公司也相继推出自己的相关业务,如华为的FusionInsight,和海尔的SCRM(社交化客户关系管理)平台。
其中,大多数平台主要解决企业特别是大企业内部的数据孤岛问题,将CRM(客户关系管理)、ERP(企业资源计划)、OA(办公自动系统)等业务系统打通,实现跨行业、跨部门的数据分析与整合,以协助企业的运营、管理和决策。
在这部分数据处理平台中,包括依靠技术模块的变化,提供不同行业平台服务的平台,和针对专门行业的平台;后者数量较少,在交通、建筑和媒体行业都有较为典型的专业化平台出现。
此外,数据处理平台中还有一类针对特定业务系统的大数据平台,比如海尔的SCRM,就是专门的社交化客户关系管理的数据平台。
由于大数据平台在大数据产业中的基础性地位,国内的大数据处理平台企业数量相对较多。对其业务性能和服务的评价体系也相应较为完整。
大数据处理平台供应商,九章云极的CEO方磊称,数据集成能力、存储和计算能力、分析能力、部署能力、运维能力、开发定制能力,和管理协调能力等七大方面的能力,会是厂商在挑选平台服务时的主要尺度和标准。其中前六者形成数据资源挖掘和计算能力闭环,管理协调能力则影响着平台的工作效率。
然而需求方的要求似乎并没有得到满足。方磊向21世纪经济报道记者透露,在他们与平台需求企业的对接中,“端到端”、在数据处理平台上直接实现数据分析的要求,越来越多。需求方,往往也是数据应用企业,希望平台能够提供一体化、一键式的自动化数据服务。
在商业价值开放较好的大数据处理平台区块,需求正加速推动着产品的转型。“未来大数据平台和大数据分析的融合会是一种趋势,大数据分析企业会向下渗透到数据收集和整理,大数据平台企业会往数据分析上发展,这种扩张是必然的。”方磊说。
不过在当下的技术和人才条件下,大多数大数据处理平台,还只能实现基础性的数据分析,和简单的可视化呈现。清华大学数据科学研究院执行副院长韩亦舜,在接受21世纪经济报道记者采访时表示,目前一键式的自动化数据服务,只能在一些数据结构单一的特定领域实现。对于多源异构的数据,想要实现一键式自动化服务,还有很长的路要走。未来的数据平台,实现针对不同行业领域的垂直细分后,可能会在某些行业率先实现突破。
十项大数据标准制定中
在业界构想中的完整大数据生态链里,不同人的分类不同,大数据企业的类型也很多。其中必须要提的,就是大数据产业最基础的工作——数据源。一些数据源企业和数据存储系统企业,都已在市场上占据了一席之地。
目前,由于数据流通尚未形成规模,国内数据源区块中的平台比例较为明显。作为当下仅有的几家号称专门从事数据源业务的公司之一,数据堂搜集线下数据,开展线上业务的市场定位和数据众包、采集加工流通三位一体的“数据银行”的业务模式较有代表性。
然而,由于行业规则和行业标准缺失、数据的权属不明,当下大量的数据交易是不规范且有争议的。国务院发展研究中心技术经济部副部长田杰棠称,数据交易的前提是产权要清晰,尤其是个人在线活动产生的数据,其产权到底属于个人还是企业,对于整个产业的发展和数据资源的配置都有很大影响。