译者:一只鸟的天空
引言
在大数据技术飞速发展的今天,谁才是我们大数据科研与工业界中最有威望的科学家呢?下面我们来进行梳理,共罗列了25位当今世界,无论是在学术与工业界都产生巨大影响的数据科学家(Data Scientists)。他(她)们推动了整个领域的发展,毫无疑问,无论是在学术界还是还工业界,他(她)们都是一座座山头式的人物。他(她)们是我们这些从事大数据产业发展的榜样。他(她)们便是所谓的大师级人物。
数以万计的数据从业者通过他(她)们的论文、博客、视频、讲义等进行学习与进步,并找到相应的应用场景解决方案。这些大师为人们解开了统计机器学习、神经网络以及深度学习的神秘。
下面从三个类别对这25位大师进行简介,虽然这个分类可能并不那么恰当,但是可以加深读者对他(她)们的了解。
科研学术界大师(Research Oriented Data Scientists)
这些科学家全身心致力于在数据中发明新的算法或者模型,他(她)们更倾向于学术与科研界的创新与创造。
工业界应用大师(Data Scientists Turned Entrepreneurs)
这些科学家致力于将技术转变为生产力,应用数据技术去创造产品和服务。
实践中的大师(Data Scientists in Action)
显然,并不是说上面两类大师不是实践派。只是为了强调这类大师将数据科学引入到实践当中所作的贡献。
为了便于大家去全面深入得了解和学习这些数据大拿,本文所列举的每个大拿都有其链接(LinkedIn/Twitter).
Research Oriented Data Scientists: 科研学术界大师
Geoffrey Hinton
只要是在机器学习届混的或者懂点机器学习的人们,抑或懂点神经网络的人们,相信都知道“Back Propagation“反向传播的鼎鼎大名。Hinton便是将BP算法应用到神经网络与深度学习中人员之一,并且是主导者(co-inventor). Hinton 提出了“Dark Knowledge”黑暗知识概念(“Dark Knowledge”这本书籍已经出版,亚马逊上面有卖,288RMB,可见其nb性),该概念是受小概率比率事件中的“大部分知识”对于训练与测试中的代价函数是没有影响的。Hinton在人工智能领域中无人不知无人不晓是因为其在人工神经网络(Artificial Neural Networks)中所作出的贡献。
早在上世纪60年代,Hinton在高中时期,就有一个朋友告诉他,人脑的工作原理就想全息图一样。创建一个3D全息图,需要大量的记录入射光被物体多次反射的结果,然后将这些信息存储在一个庞大的数据库中。大脑存储信息的方式与全息图类似,大脑并非将记忆存储在一个特定的地方,而是砸整个神经网络里传播。从此,Hinton对神经网络深深得着迷。他在剑桥大学学习心理学期间,发现科学家们并没有真正理解人类大脑,人类大脑有数十亿个神经细胞,它们之间通过神经突触互相影响,形成极其复杂的相互联系,然而科学家们并不能解释这些具体的影响和联系。神经到底是如何进行学习以及计算的,对于Hinton,这些正是他所关心的问题。Hinton在爱丁堡大学获得了人工智能的博士学位,现为多伦多大学的特聘教授。在2012年获得了加拿大2012年基廉奖(Killam Prizes,Killam Prizes是有“加拿大诺贝尔奖”之称的国家最高科学奖)。在2013年,他加入Google,并带领一个AI团队,目前正进行着Google Brain项目。
他和他的团队强力将“神经网络”从垂死边缘一步步带入到当今的研究与应用的热潮,变成了炙手可热的的学术界课题,将“深度学习”从边缘课题变成了Google等互联网巨头仰赖的核心技术。目前神经网络与深度学习已在自然语言处理、语音处理以及计算机视觉等领域中得到了空前广泛与成功地应用。越来越多的科学家从事神经网络与深度学习的研究工作。换句话说,深度学习是目前的主流,我们不再是极端分子了。
Yann Lecun
Lecun在多伦多大学随Hinton读博士后,即他是Hinton的学生。他是另一个神经网络与深度学习大拿。他在皮埃尔玛丽居里大学(又称巴黎第六大学, Université Pierre et Marie Curie (Paris VI))获得了计算机科学博士学位,期间提出后向传播算法。他如今在Facebook带领团队进行人工智能工作,即他是Facebook人工智能实验室的负责人。他在纽约大学任职了12年,是纽约大学的终身教授,是纽约大学数据科学中心的负责人。为了表彰他在深度学习领域里所作出的贡献,IEEE计算机学会颁给他著名的“神经网络先锋奖”,在2014年北京计算智能大会上授予。在加盟Facebook之前,Lecun已在贝尔实验室工作超过20年,期间他开发了一套能够识别手写数字的系统,叫作LeNet,用到了卷积神经网络(Cnvolutional Neural Networks, CNN),已开源。他研发了很多关于深度学习的项目,并且拥有14项相关的美国专利。他甚至开发了一种开源的面向对象编程语言Lush,比Matlab功能还要强大,并且也是一位Lisp高手。他在机器学习、深度学习、计算机视觉、计算神经科学领域进行了深度研究。