大数据如何推动金融业的商业变革?

虽然银行客户的线上活动日渐增多,但金融业的铁律在互联网时代依然适用,也就是说在客户身边设立实体网点仍然是金融机构的竞争优势。然而,网点的运营成本往往不菲,如何实现网点资源的价值最大化成为了每家银行面临的问题。在该项目中,项目组结合银行的内部数据(包括现有的网点分布和业绩状况等)和外部数据(如各个地区的人口数量、人口结构、收入水平等),对350多个区域进行了评估,并按照主要产品系列为每个区域制定市场份额预测。

  根据用户画像,为银行运营和优化提供科学的依据

项目组还通过对市场份额的驱动因素进行模拟,得出在现有网点数量不变的情况下该行网点的理想布局图。该行根据项目组的建议对网点布局进行了调整,并取得了良好的成效。这个案例可以为许多银行带来启示:首先,银行十分清楚自身的网点布局,有关网点的经营业绩和地址的信息全量存在于银行的数据库中。其次,有关一个地区的人口数量、人口结构、收入水平等数据都是可以公开获取的数据。通过应用大数据技术来把这两组数据结合在一起,就可以帮助银行实现网点布局的优化。

创新商业模式,如何用大数据帮助银行中间收入?

过去,坐拥海量数据的银行考虑的是如何使用数据来服务其核心业务。而如今,很多银行已经走得更远。他们开始考虑如何把数据直接变成新产品并用来实现商业模式,进而直接创造收入。例如,澳大利亚一家大型银行通过分析支付数据来了解其零售客户的“消费路径”,即客户进行日常消费时的典型顺序,包括客户的购物地点、购买内容和购物顺序,并对其中的关联进行分析。

该银行将这些分析结果销售给公司客户(比如零售业客户),帮助客户更准确地判断合适的产品广告投放地点以及适合在该地点进行推广的产品。这些公司客户过去往往需要花费大量金钱向市场调研公司购买此类数据,但如今他们可以花少得多的钱向自己的银行购买这些分析结果,而且银行所提供的此类数据也要可靠得多。银行通过这种方式获得了传统业务之外的收入。更重要的是,银行通过这样的创新为客户提供了增值服务,从而大大增强了客户粘性。