摘要:在互联网技术和信息技术的推动下,大数据在金融行业的风控中获得了引人注目的进展,但是在实际运用中其有效性还需进一步提高。当前大数据风控有效性不足既有数据质量的障碍,也有大数据风控的理论性障碍,还有数据保护的制度障碍。消除这些障碍、提高大数据风控的有效性,需要金融企业、金融研究部门和政府监管部门的共同努力。
关键词:互联网金融;大数据;风险控制
大数据已经撼动了世界的方方面面,从商业科技到医疗、政府、教育、经济、人文以及社会其他各个领域。早在1980年,阿尔文?托夫勒(Alvin Toffler,1980)在《第三次浪潮》一书中就预言大数据将成“第三次浪潮”。奥巴马政府将大数据定义为“未来的新石油”。凯文?凯利(Kevin Kelly,2014)认为所有的生意都是数据生意。2013年互联网金融将“大数据”推向了新的高度。金融的核心是风险控制,将风控与大数据结合、不断完善和优化风控制度和体系,对于互联网金融企业和传统金融企业而言都同等重要。
一.大数据风控发展迅速,但有效性不佳
在应用层面,金融行业利用大数据进行风控已经取得了一定的成效。使用大数据进行风控已成为美国等发达国家互联网金融企业的标准配置。
美国Zest Finance公司开发的10个基于学习机器的分析模型,对每位信贷申请人的超过1万条原始信息数据进行分析,并得出超过7万个可对其行为做出测量的指标,而这一过程在5秒钟内就能全部完成。
为网上商家提供金融信贷服务的公司Kabbage主要目标客户是ebay、Amazon、PayPal等电商,其通过获取这些企业网店店主的销售、信用记录、顾客流量、评论、商品价格和存货等信息,以及他们在Facebook和Twitter上与客户的互动信息,借助数据挖掘技术,把这些店主分成不同的风险等级,以此来确定提供贷款金额数量与贷款利率水平。
中国互联网金融企业对于大数据风控的运用也如火如荼。
阿里推出了面向社会的信用服务体系芝麻信用,芝麻信用通过分析大量的网络交易及行为数据,对用户进行信用评估,这些信用评估可以帮助互联网金融企业对用户的还款意愿及还款能力做出结论,继而为用户提供相关的金融和经济服务。
腾讯的微众银行推出的“微粒贷”产品,其风控核心就是,通过社交大数据与央行征信等传统银行信用数据结合,运用社交圈、行为特征、交易、基本社会特征、人行征信5个维度对客户综合评级,运用大量的指标构建多重模型,以快速识别客户的信用风险。
对于大数据风控的理论研究尚处于萌芽阶段,本文以“大数据风控”为主题在CNKI数据库进行搜索,与此相关的文献数量可以从侧面反映大数据风控的理论研究现状。
CNKI数据库中以“大数据风控”为主题的文献共46篇。在这些文献中,以报道性的文章较多,重要报纸全文库和特色期刊总共为33篇,占比72%;而理论研究的文章较少,中国学术期刊总库为12篇,占比26%;尚没有CSSCI2014—2015年的来源期刊(如图1)。
图1 CNKI数据库与大数据相关的文献数量和分类
虽然大数据风控在实践上已经有所进展,但是其有效性也受到一些挑战。
例如,以大数据风控为基石的P2P平台就频频暴露出各种各样的问题来。对于P2P平台来说,由于其纯线上操作的特点,大数据风控的有效性是决定其经营状况的重要因素,如果大数据风控有效性较差,则面临的坏账压力较大,容易出现提现困难甚至跑路的问题。
网贷之家的数据显示,2015年上半年新增问题平台419家,是2014年同期的7.5倍,已超过2014年全年问题平台数量。截至2015年10月底,全国问题平台数累积已达1115家。
二.当前大数据风控有效性不足的原因分析
一些学者对于大数据风控的有效性问题进行了研究。
王强(2015)指出当前个人大数据征信的问题,一是数据的真实性,二是数据收集的法律障碍,三是坏账的不可预测性问题。
甚至有作者认为大数据风控是无效的,陈宇(2015)援引各种证据认为大数据风控是无效的。