大数据风控的现状、问题及优化路径

尽管大数据风控的有效运用尚处在诸多障碍,但这并不能成为大数据风控无效的理由。因为对于数据这个资源的挖掘尚处于初级阶段,在消除障碍、解决问题中前行,是大数据风控发展的必然趋势。有效扫除当前大数据风控的障碍需要各方面的共同努力,其中金融企业、金融研究部门和政府监管部门的角色尤为重要。

对于金融企业而言,要从基础数据上保证客户数据的多样化、连续性和实时性,确保数据真实可靠。

对于金融研究者而言,可从经济学、数学等多个角度综合论证大数据风控的有效性,为大数据风控提供理论支持。

对于政府监管部门而言,需要从法律制度、会计制度等方面进行建设,构建数据合理运用的良好环境体系。

(一)对于金融企业而言,要构建多样化、连续性和实时性的基础数据

1.多维度的收集数据,互联互通,打破数据的孤岛

美国征信系统的完善是因为美国政府对其拥有的大数据资源的开放程度日益透明化。

目前我国的大数据风控系统还没有实现互通互联,阿里、银联、平安、腾讯以及众多的P2P公司,都是各自为政,P2P公司拿不到央行的数据,几家大的互联网平台在相关大数据的分享上彼此也未互通有无。

因而,各金融企业要建立互联互通机制,打破数据孤岛,从而能多维度地收集数据,确保数据之间能够相互验证。

2.从供应链交易环节获取数据

获取真实数据最好的途径就是要切入客户的交易环节,尤其是稳定可持续的交易环节,即供应链。

一方面,经过了几十年的发展,当前的供应链都有一套完整上下游进入和退出机制,数据的真实性对于核心企业而言至关重要,因而这些数据的质量非常优异。

另一方面,这些数据和数据维度对于供应链中的企业评价是可靠的,金融企业可以此为基础,加上自身的风险控制经验,构建一套全新的基于数据的信用评价机制。

3.积极布局“物联网+”

物联网覆盖了产品生产、交易和使用的环节,因而互联网只是物联网的一部分。在物联网下,不仅要获取交易环节的数据,更重要的是获取生产环节和使用环节的数据。

因而,金融企业要积极布局“物联网+”,为获取更为全面的数据打下基础。例如,企业机器运行数据,可以收集客户汽车驾驶数据,可穿戴设备的身体状况数据,等等。这些数据都是大数据风控不可或缺的部分。

(二)对于金融研究部门而言,可从经济、金融等多个角度综合论证大数据风控的有效性,为大数据风控提供理论支持

当前对于大数据风控模型的构建大多是从技术的角度探讨的。但是,从经济、金融角度进行的探讨亟待加强,不同的经济假设会使模型推导的结果产生截然不同的变化。因而,从经济、金融等角度对大数据风控有效性的研究就显得很有必要了。比如大数据风控如何顺应经济周期的变化,如何从统计上论证过去的数据对于未来行为判断的准确性,如何解决道德风险所带来的不确定性。例如,唐时达(2015)提出要把数据提升至与传统抵质押品同等重要的高度,建立“数据质押”风控体系。

(三)对于政府监管部门而言,要推动和完善与数据相关的制度建

1.法律制度的建设,对数据的收集和使用予以法律上的保护

我国对于数据保护的制度性举措散见于多部法律中,如宪法、刑法、侵权责任法等,多是以保护个人隐私、通信秘密等形式出现,尚缺乏一部数据保护的专门性法律。这导致了数据的法律边界不明,数据保护法律的操作性不强、数据保护执法机制滞后等问题,制约了数据收集和运用的发展。

对此,最理想的状况是出台一部《信息保护法》。在完善个人信息保护法律制度的道路上,应出台《个人信息保护法》,明确国家机关、商家和其他法人、自然人掌握个人信息的边界和使用的范围[6-7]。齐爱民、盘佳(2015)认为要构建数据主权和数据权法律制度[8]。2014年最高人民法院颁布的《关于审理侵害信息网络传播权民事纠纷案适用法律若干问题的规定》(以下简称《规定》)就是此领域的进展之一,《规定》首次明确了个人信息保护的范围。

2.会计制度建设,对数据资产予以明确的计量