SAS:保持40年持续增长,创造了数据分析的商业神话

 Oliver表示,SAS并没采用Hadoop等现成的分布式计算开源软件,而是自行开发了分布式并行计算架构,并加入了内存计算等技术。而这些技术的研发,也都是在客户需求下促成的。比如金融机构需要分析成千上万支股票的风险水平,这就是海量数据的计算任务,并且要在很快的时间内完成,否则对于金融机构来说就没有实际的意义。

 有了Analytical Server,SAS软件可以不用提前预知每一次数据分析的意图,而是在数据流动过程中快速完成数据分析,这就使得探索型数据分析成为可能。特别是Analytical Server能管理海量并行内存,这种并行式内存计算可实现实时探索型数据分析,尤其适用于物联网。

 在物联网环境中,数据流动在前端移动设备上以及后端的服务器里。对于SAS来说,在前端有ESP(Event Stream Processing)解决方案处理实时流数据,在后端有Analytical Server处理海量并行计算。作为独立产品的ESP,现在也被直接内嵌到Viya云服务架构中。

 负责物联网解决方案的SAS产品管理总监Jason Mann表示,ESP是SAS在过去的18到20个月内自主研发出来的流数据处理产品,其产品核心竞争力在于数据处理的能力以及模型的稳定性,可实现高速、小时间窗口及大规模的流数据处理,支付多种开源语言和多种数据源。

 Oliver表示,SAS正在把数据分析和计算推向前端,更多也在流数据中完成数据分析和处理,而不是等数据回到后端数据中心才处理。现在智能手机的计算能力越来越强,可完成很多计算任务。数据流动是计算性能的首要杀手,因此要把计算能力推向数据。Jason Mann说,物联网其实就是计算架构向边缘计算的演进,把决策、分析和洞察推进到了设备端。

 数据分析是一种信仰

 作为在全球范围内最早创造和推出商用数据分析产品和解决方案的公司,SAS还有一个非常重要的工作,那就是市场教育。数据分析并不能直接创造商业价值,而且分析结果有的时候甚至与直观经验相反。对于企业来说,投资数据分析,就是投资一种商业理念甚至是商业信仰。