企业产生和收集的数据量日渐增长,随之而来的是对这些数据进行集成需求的增长,可以帮助IT团队简化并管理这一流程的数据集成软件应运而生。但是产品类型如此丰富,对你的企业来说哪些数据集成工具才是最佳之选呢?选择这类产品并非要挑那些拥有丰富功能的,而是要选择与你的集成需求和企业特质最为适配的产品。
在对数据集成平台评估之前,要在企业内部进行调查来协助产品选择过程。你的调查应该涵盖下列主题:
源系统。企业拥有多少源系统?是否拥有重叠系统,例如多重CRM或是销售处理应用程序?除了传统结构化数据,是否存在非结构化或半结构化数据?除了内部数据源,是否存在外部数据源?数据量和更新频率又如何呢?
集成用例。企业需要为分析而进行数据集成么——主要通过数据仓库?应用程序集成又是怎样呢?你所在的企业需要为主数据管理(MDM)获取和处理数据么?在本地系统和云应用程序或物联网设备间同步数据又是如何呢?亦或是在本企业以及其他企业的内部业务流程和应用程序间交换数据?需要为复杂事件处理和流处理应用程序捕获并交付数据么?在不迁移至中央数据存储的情况下,是否需要将来自几乎完全不同系统的数据进行集成呢?
企业规模。你所在企业的年收入怎样,拥有多少员工,对于数据集成的IT预算有多少?
资源和技术。企业是否拥有专门的IT资源来执行数据集成工作?对于使用数据集成工具以往的经验水平如何?
在你回答了这些问题之后,就可以浏览以下十大数据集成产品来探寻哪一款与你的需求和特点最为匹配了。
针对大型企业的数据集成产品
大型企业通常具有以下特点:
不同的源系统集总是与高数据量相伴而生的。结构化数据居于主导地位,但是像社交媒体,网页服务器日志和平面文件,还有如XML和面向消息数据的半结构化数据源同样需要进行集成。
多种集成用例。
足够的IT预算来购买任何可用数据集成工具和必要的支持基础设施。
专门的IT团队,这些团队拥有数据集成专家或是有预算雇用那些在使用给定数据集成工具上有丰富经验的员工和顾问。
符合上述特征的大型企业应该考虑用Informatica PowerCenter和IBM InfoSphere Information Server来进行数据集成,因为这些产品对集成用例进行了全方位的解决。这两款产品还提供可扩展性以处理大型企业对数据复杂性,数据量和速度的要求,而且还能跨多个项目使用,并用于任意规模的团队。IBM和Informatica都提供MDM和数据清理功能。IBM的产品解决了信息分析和管理的需求,而Informatica则专注于信息集成。但是这些强大的工具价格不菲。除了它们通常要比竞争对手的产品贵出许多之外,它们还要求使用者有更为丰富的技能和经验。此外,比起竞争对手,它们通常还要求有更大量的基础设施和更复杂的实现。
多年来,很多IBM和Informatica的竞争对手显著地提高了它们产品的功能和特性,这为大型企业提供了更多的选择,对于那些在数据集成上有更少要求的企业尤为如此。来自SAP,Oracle和SAS的数据集成工具解决了大量数据源和数据集成的用例。这些公司同样提供企业级应用程序,如尤其是在大型企业使用广泛的企业资源计划,CRM和分析应用等,而且它们也将自己的数据集成工具用在这些应用程序上。如果一家企业在上述任意公司的应用程序上有巨大投入,那么将该厂商的数据集成工具纳入考虑范畴也是理所应当的。
SAP Data Services和SAS Data Management Platform都对大型企业的数据集成功能提供广泛的支持。虽然SAP Data Services仅限于和SAP的业务应用程序协同工作,但是它正变得与该公司软件组合集成的更加紧密。这就意味着已经是SAP客户的企业就需要考虑使用这一集成产品了。同样,正在使用SAS统计和分析产品的客户则应该将SAS Data Management Platform纳入考量。
针对有深入集成需求的中型企业的工具
中型企业通常具有以下特点:
各种源系统用于处理重叠数据对象,而这些数据对象可能是在本地也可能是在云端。数据量会因行业或是所提供的产品和服务的不同而不同。结构化数据源仍占主导地位,而且任何需要进行集成的非结构化数据通常有范围限制。
如果将来数据仓储得以解决,虽然应用程序集成可能甚嚣尘上,但是提取,转换和加载(ETL)以及数据仓库还是主要的集成用例。