基于大数据的用户画像构建(理论篇)

◎用户画像基本成型

该阶段可以说是二阶段的一个深入,要把用户的基本属性(年龄、性别、地域)、购买能力、行为特征、兴趣爱好、心理特征、社交网络大致地标签化。

为什么说是基本成型?因为用户画像永远也无法100%地描述一个人,只能做到不断地去逼近一个人,因此,用户画像既应根据变化的基础数据不断修正,又要根据已知数据来抽象出新的标签使用户画像越来越立体。

关于“标签化”,一般采用多级标签、多级分类,比如第一级标签是基本信息(姓名、性别),第二级是消费习惯、用户行为;第一级分类有人口属性,人口属性又有基本信息、地理位置等二级分类,地理位置又分工作地址和家庭地址的三级分类。

◎数据可视化分析

这是把用户画像真正利用起来的一步,在此步骤中一般是针对群体的分析,比如可以根据用户价值来细分出核心用户、评估某一群体的潜在价值空间,以作出针对性的运营。如图:

基于大数据的用户画像构建(理论篇)

◎后记:

这里只写了用户画像的构建流程和一些原理,下次有时间我会写篇关于大数据平台的实践文章,并说一下一些行为模型的算法原理,有兴趣的朋友可以关注下。

文/我勒个矗(简书作者)