哈佛商业评论:企业有四个常见大数据误区

有关数据和数据分析的高谈阔论比比皆是。不断有人告诫各大公司要规划恰当战略来收集分析大数据,并警告不这么做可能带来的不良后果。很多公司都觉得自己享有客户数据这样一个大宝藏,却大都不知道该如何利用。我们归纳了管理者在数据应用上的四个常规错误认识。

错误一:没有理解融合的概念

阻碍大数据发挥价值的第一大挑战就是兼容性和融合性。大数据的一个主要特点是其来源多样。然而,如果数据形式不相同,或难以整合,则其来源的多样性将使公司难以削减开支,也无法为客户创造价值。例如,在我们和一个合作项目中,该公司拥有丰富的数据,记录客户的交易量和忠诚度,以及专门的在线浏览行为数据,但是鲜少交叉检索这两类数据来判断某种浏览行为即为交易达成的前兆。面对这种挑战,公司创建了“数据湖”来容纳大量非结构性数据。但是,这些公司能够加以利用的数据目前都显得杂乱无章,只不过是一些以文本,也就是说,当这些数据只是普通的二进制数字时,要将它们井然有序地存储起来非常困难。要将来源不同的它们整合起来更是难上加难。

错误二:没有认识到非结构化数据的局限性

阻碍大数据发挥价值的第二大挑战是其非结构化的特性。对文本数据的挖掘已经有了特别的进展,其语境和技术所带来的认识与结构化数据类似,只是其它形式的数据如视频仍不易于分析。举个例子,虽然拥有最先进的人脸识别软件,有关当局仍然无法从大量视频中识别出波士顿马拉松爆炸案中的两名嫌疑人,因为该软件尚在处理从不同角度拍摄的嫌疑人的照片。

虽然从非结构性数据获取信息面临挑战,但是各公司在利用这些数据初步提升分析已有数据的速度和精确度上取得了显著成绩。比如,在石油和天然气勘探中,人们就用大数据来优化正在进行的操作,以及针对地震钻井的数据分析。尽管他们所使用的数据在速度、种类和体积上都有可能增加,最终这些数据还是用于同一个目的。总之,一开始就希望通过利用非结构性数据形成新的研究假设是站不住脚的,除非各公司通过“实践”有了这种专业能力,能利用非结构性数据优化某个问题答案。

错误三:以为关联分析意义重大

第三大挑战——我们认为是阻碍大数据价值的最重要的影响因素——是观测数据的大量重叠使其因果关系难以明确。大规模数据集往往包含众多相似或完全一致的信息,直接导致错误的关联分析,误导管理者的决策。近日《经济学人》指出“在大数据时代,相互关系往往是自己浮现出来的”,《斯隆管理评论》在博客中强调虽然很多公司都能接触到大数据,但是这些数据并不“客观”,因为问题在于要从中提炼出值得采取行动的信息。同样,典型的用于分析数据的机器学习算法所进行的关联分析并不一定会提供原因分析,因而不会给出可执行的管理意见。也就是说,让大数据有利可图的技巧在于能够从仅仅观测到相互关系转变为正确鉴别何种关联为因果形式,可以作为战略举措的基础。要做到这一点就必须超越大数据。

谷歌趋势是大数据的经典范例,它利用谷歌搜索词条整合记录。然而,它也说明了仅仅用于关联分析的数据是毫无意义的。起初,研究人员称数据可以用于反映流感的传播。然而后来,研究人员发现因为数据体现的是过去,使用这些数据只能在现状与过去模式相关的情况下,稍微改善应对行为。

举个更具体的例子,假设一个鞋业销售商向曾浏览其网站的消费者投放广告。原始数据分析认为消费者看到这些广告会更愿意购买鞋子。可是,这些消费者在看到广告之前就已经对该销售商表现出了兴趣,因而比普通人更愿意进行交易。这个广告有效吗?很难说。实际上,这里的大数据并没有考虑营销传播有效性的因果推论。要知道该广告是否有效,销售商需要进行随机检测或试验,选取一部分消费者不接触这个广告。通过比较看了广告和没看广告的消费者之间的购买率,公司才能确定是否看到广告能让消费者更愿意消费。这个案例中,价值主要不是通过数据创造的,而是通过设计、执行以及阐释重要的试验来创造的。