谓之“神化”,是由于大数据应用在国内外实践产生的案例,在提质增效及个性化服务方面,产生的利润与之煽动的蝴蝶效应,让有些工业企业以为只要安装了传感器,能把数据采集下来,就能让数据说话,就能从上千种因素中定位出故障原因,就能精准指导研发、生产、运营。甚至误认为经典的机理模型或多年积累的经验不再重要。
然而脱离机理与领域知识的大数据分析结果常常是“你以为你以为的不是你以为的”。
工业大数据的“小”与“大”
从传统大数据3V(Volume, Velocity, Variety)或4V(Veracity)度量角度来看,工业数据当然属于大数据的范畴,在体量上甚至超过互联网大数据[1]。然在数据分析中仍不时感觉到工业数据之“小”,主要体现在3个方面。
1)价值密度:王建民教授曾指出[2],相对于产品图纸、工艺设计等传统“小”数据,工业“大”数据的价值密度低。工业大数据分析无法脱离这些基础信息的支撑,不举小数据之“纲”,难行大数据之“目”。