大数据在医疗卫生领域的应用:减少成本,改善效果

  通过预测分析提高效果

  不少积极的尝试,例如正在加速电子健康记录(Electronic Health Records,EHRs)的有效利用、病人信息的数量和细节,能够通过多种信息源组合、分析各种各样的结构化和非结构化的数据有助于提高诊断病人病状的准确性、根据病状匹配治疗方案以及预测病人患病或再患病的风险。

  以电子健康记录(EHR)中的数据为来源的预测模型被应用于早起疾病的检测,并且还降低了一些疾病的死亡率,比如充血性心力衰竭(CHF)和败血症等疾病。降低充血性心力衰竭(Congestive Heart Failure ,CHF)和败血症等疾病的死亡率。CHF在医疗保健支出的占比最大,CHF越早治疗越好,这样能够避免花更多的钱治疗并发症。但是医生常常会忽略它的早期临床表现。来自于佐治亚理工学院的一个机器学习示例表明机器学习算法能够比医生从病人的图表中分析出更多的因素,同时通过增加额外的特征,机器学习算法能够有效提高模型区分CHF患者和非CHF患者的能力。

  通过分析包含更多病患数据的大样本数据,预测模型和机器学习能发现之前未能发现的细微差别和模式。Optum实验室从EHRs中搜集30万病人的信息,为预测分析工具创建了一个庞大的数据库。这些工具将会帮助医生做出基于大数据信息的决策,从而改善病人的治疗。

  实时监控病情

  医疗机构正在通过持续性监控病人生命特征来提供更加具有主动性的治疗,各种监控数据能进行实时分析并及时发送警告给医疗服务提供者以便他们能及时了解病人病情的变化。通过机器学习算法进行实时分析能够帮助医生做出挽救性命的决策并且对一些病症进行有效干预。

  医疗 大数据架构 :我们应该怎么做?规模化后又该如何做?