三是银行建立第三方数据分析中介,专门挖掘金融数据。例如,有的银行将其与电商平台一对一的合作扩展为“三方合作”,在银行与电商之间,加入第三方公司来负责数据的对接,为银行及其子公司提供数据分析挖掘的增值服务。其核心是对客户的交易数据进行分析,准确预测客户短时间内的消费和交易需求,从而精准掌握客户的信贷需求和其他金融服务需求。
银行业有处理数据的经验和人才。数据分析和计量模型技术在传统数据领域已得到较充分运用,同时也培养出大批精通计量分析技术的人才。如在风险管理方面,我国金融监管部门在与国际接轨过程中,引入巴塞尔新资本协议等国际准则,为银行业提供了一套风险管理工具体系。银行在此框架下,利用历史数据测度信用、市场、操作、流动性等各类风险,内部评级相关技术工具已发挥出效果,广泛应用于贷款评估、客户准入退出、授信审批、产品定价、风险分类、经济资本管理、绩效考核等重要领域。
7、为什么需要大数据技术?
大数据到底是什么?我们为什么需要大数据技术?
Mike Jude:从本质上来说,大数据就是曾经被称为数据仓库的逻辑延伸。顾名思义,大数据就是一个大型的数据仓库,一般有一个能支持业务决策的业务重点。但是,它和传统数据库不同的是,大数据不用构建。
在典型的数据库中,数据会被组织成标准的字段,并使用特定的密钥索引。如果你熟悉Microsoft Access应用程序,那么你就能完全理解这个概念。比如,一个顾客记录可以由姓氏、名字、地址和其它信息组成有通用标签的字段。每个顾客记录样式都是相同的,这样可以通过使用搜索关键词来检索,比如搜索姓氏。
现在,如果你想链接到这些客户记录需要怎么做?链接到客户的图片或者视频呢?如果是链接到客户的所有记录呢?
将这么多不同的数据源互相映射,一般的数据库还做不到。另外,需要链接的数据量是非常巨大的。这就产生了“大数据”的概念。大数据使用特殊的数据结构来组织和访问巨大数量的数据,可能达到多个艾字节的范围。一般情况下,这需要跨多个服务器和离散数据存储进行并行计算,而小企业往往难以维持这种大数据的存储库。但是,大数据正逐渐成为云服务提供商能提供的一种服务,从而把大数据应用推向更多的公司。
但是,还有一个“大”问题,就是我们为什么需要大数据?答案就是相关性的价值。如果你能看到乍一看似乎没什么关系的数据设置之间的关系,你会获取很多重要信息。比如你想知道你的公司是不是容易被黑客利用。那么你需要跨多个应用程序和数据中心检查无数条交易。这时如果没有大数据技术和相关的分析技术,这几乎是不可能完成的。
最终,随着数据量的增长、业务的可用性和重要性的增加,大数据的定义可能会用来描述大多数数据库应用。IT专业人士应该掌握大数据相关概念和术语,以免遇到困难。
8、企业大数据如何起步?
大数据应该是从小数据逐渐演变上去的,是一个正常的生态,而不是瞬间变化的。
大数据这个概念跟自媒体的概念类似,需要企业自己去建设,而不是从一开始就想着依靠别人。很多企业在谈自媒体的时候,像谈别人的事情一样。比如一谈自媒体,就觉得那是第三方提供的一个平台,大家在那儿发发牢骚。自媒体是自己的媒体,企业自己也要参与进去。同样大数据不是别人的大数据,我们假设有一个第三方提供了大量的数据,有很多很多信息,CI、BI之类的很多模块化东西供我们来用。如果这样的话,你有,竞争对手也有,你能得到的东西,竞争对手也能得到的情况下,就不能称之为核心竞争力。
大数据作为企业来说要变成自身的一个竞争力,企业必须得建立自己的企业级的数据。
要做大数据,首先要了解自己的企业,或者自己所在的行业的核心是什么。我们现在经常发现,有很多企业在竞争的过程中,最终不是被现在的竞争对手打败,而是被很多不是你的竞争对手所打败。很简单的一个例子,大家都认为亚马逊是做电商的,但这是错的,它现在最主要的收入来自于云(云服务)。也就是说企业需要找到自己的核心数据(价值),这个是最关键的。只有在这个基础上,建立自己的大数据才有可能,才能做一些延伸。其次,要找到内部的一些外围相关数据,去慢慢地成长它。有点像滚雪球,第一层是核心,第二层是外围相关的数据。第三层是什么?就是外部机构的一些结构化数据。第四层是社会化的,以及各种现在所谓的非结构化的数据。这几层要一层一层地找到它,而且要找到与自己相关的有价值的东西。这样你的大数据才能建立起来。