还可以基于气候与天气进行推荐,例如深圳,天气比较热时,页面上会推荐“空调”等类似的消暑商品;若出现“雾霾”天气时,则会推荐“空气净化器”。这类规则不复杂,而且天气数据都是公开可以拿到的,只要在原来的基础是增加一些标签。
关于视觉的推荐,也就是基于图片的搜索,目前使用的还比较少。当用户输入一张图片,结果会根据这个图片给出相关的推荐。比如逛街的时候,看到别人穿的衣服或者拿的东西不错,可以直接拍下照片,通过相应的图片计算和搜索算法,相关的商品就可以搜索出来。
前面介绍了推荐系统的应用,那推荐系统的技术架构是怎样的呢?大数据平台的底层是各种数据平台,数据源包括会员数据、商品数据、订单数据等结构化的数据,以及行为日志等是非结构化的数据,包括浏览日志、点击日志、客户和客服的对话记录等。数据源上面是数据同步,通过“Sqoop”、“Flume”、“Kafka”等技术来实现,它的特点是存储的数据和交换的数据比较多。然后是数据存储,用的比较多的是“MySQL”、“Hbase”等。接着是计算框架,如“MapReduce”、“gome_realtime”、“spark”和“sparkstreaming”等。再接着数据平台之上就是算法引擎和推荐引擎,通过许多的算法模型,如“协同过滤”、“关联规则”、“矩形分解”,形成用户画像,结果可以是数据形式,报表形式、或者Excel表形式等。最后是各种应用端,“网站”、“APP”、“WEB”或其他营销应用端。