数据运营入门:方法论+案例

如图所示,假设产品更新后最近的收入降低了,老板让分析下原因出在什么地方、可以做出哪些调整,那么我们可以将收入拆分——收入=付费人数*ARPU(每用户平均收入)。接下来对付费人数进行拆分,付费人数=活跃人数*付费渗透率。据观察,付费渗透率几乎没有变化,而活跃人数下降了,进一步细分活跃人数。活跃人数=新用户中的活跃用户+老用户中的活跃用户,倘若老用户中的活跃人数上升了,而新用户的活跃人数下降了,可以进一步将其拆分。然后分析,新用户=推广覆盖人数*转化率,在转化率基本不变的情况下,将推广渠道细分,根据数据,渠道一下降了而渠道二上升了 ,不断进一步拆分,直到指标不能再细分后,针对细分后的指标分析其中哪些对最终的收入影响较大,产生变化的原因是什么,是否可以通过人为的调整方案后进行改善,等等。

2、造成数据波动的原因

数据运营入门:方法论+案例
 

常见造成数据变化的原因:时间、推广与触达、运营活动、关联特性、用户属性和构成、故障、业界趋势。

前三个就不详细展开了,这里讲下后边几个要素。所谓关联特性其实就是刚刚通过杜邦分析法拆分出来的要素,而用户属性和构成要素是指针对不同的用户,同个产品或活动的日活、付费等数据是会发生变化的。业界趋势对运营数据的影响:举个去年很火的例子——O2O,去年O2O这个概念炒的特别火的时候,大量资本砸钱进入这个市场,在各种补贴的刺激下,用户激增,现在市场较为成熟后,用户数增长就比较平缓了。