从今年年初的AlphaGo人机大战之后,人工智能成为了产业界最受关注的一大热点。其实,从1956年人工智能概念出现迄今已经60年的历史了,人工智能也经历了几番起起落落。为何今天成为了业界热点呢?归结起来,实际上是三大技术基础的成熟和发展奠基了人工智能的落地。
人工智能=数据+计算能力+算法
首先,人工智能对计算能力的要求很高,而以前研究人工智能的科学家往往受限于单机计算能力,需要对数据样本进行裁剪,让数据在一台计算机里进行建模分析,导致模型的准确率降低。伴随着分布式计算能力的迅速发展,云计算平台可以利用成千上万台的机器进行计算,尤其是GPU的发展为加速人工智能落地奠定了基础计算能力,使得类似于人类的深层神经网络算法模型为代表的人工智能应用成为现实;
其次大数据时代已经到来,多来源、实时、大量、多类型的数据可以从不同的角度对现实进行更为逼近真实的描述,而利用深度学习算法可以挖掘数据之间的多层次关联关系,为人工智能应用奠定了数据源基础;
第三是算法的发展尤其是Geof Hinton教授2006年发表的论文,开启了深度学习在学术界和工业界的浪潮,以人工神经网络(ANN)为代表的深度学习算法成为了人工智能应用落地的核心引擎。
因此,计算能力+数据+算法三者相辅相成、相互依赖、相互促进,使得人工智能有机会从专用的技术成为通用的技术,融入到各行各业之中。