教育大数据研究综述

教育大数据研究综述

图3 基于教育大数据的数据挖掘过程

  教育大数据公认的特征之一是规模性,面对海量数据,可以采取分布式文件的系统进行并行运算。对于半结构化或非结构化的数据,可以采用自然语言理解和信息抽取等方式将其转化为结构化数据。对于杂质较多的数据,可以在数据挖掘时进行数据清洗。对于实时产生的数据可以使用自动获取效率优先的方式来采集数据。

  2.教育大数据和学习分析

  新媒体联盟(New Media Consortium)将学习分析定义为:利用松散耦合的数据收集工具和分析技术,研究分析学习者学习参与、学习表现和学习过程的相关数据,进而对课程、教学和评价进行实时修正。总之,学习分析运用多种方法采集、存储和分析学习者数据,如移动终端的数据和现场智能数据等,再使用多种技术来分析处理这些数据,最终应用于教育者和学习者,产生评估、预测和干预。基于教育大数据的学习分析过程如图4所示。