图4 基于教育大数据的学习分析过程
教育大数据学习的具体应用体现在评估、预测和干预。评估是指基本统计分析及其可视化、发现问题学生、学生社交网络分析与应用,预测是指学生分类、学生模型的构建、预测学生成绩,干预是指对教师的教学方法提供改进意见。教育大数据在学习分析中还有其他应用,如表1所示。除此之外,大数据在学习分析中的应用还包括学生分组与协作、社交网络分析、开发概念图、课件制作、规划和调度等。
教育大数据的进一步挑战
1.教育大数据的技术挑战
教育大数据在实际应用存在很多技术瓶颈,如:在数据的采集时数据挖掘和学习分析的重要环节,在这一环节有很多技术挑战;面对海量教育数据,数据的存储、处理和分析都存在技术考验;另外由于目前没有统一的数据规范,不同系统之间的兼容也是一大问题。从全局考虑,我国的教育大数据系统应遵循顶层设计原则,由教育部对数据格式、数据存储等问题制定统一规范,下级企业、学校按照统一规范去设计自己的系统,这带来了新的技术挑战。