在征信中,我们会把批准率和坏账率结合起来,也就是在机器学习中把precision(精确率)和recall(召回率)结合起来,才能作一个综合的判断。
当然,征信领域我们用得最多的是KS distance(KS距离),这是俄罗斯的两位数学家名字的首字母。
在金融领域,什么案例能证明机器学习有用?
我们很多模型都在金融机构的完成两个维度中至少一个维度的提高,那就是我们可以在保证批准率相同的请胯下降低坏账率,或者在相同的坏账率的情况下提高批准率。现在中国的征信刚刚起步,我们的模型在很多场景下可以既提高批准率又可以降低坏账率,这不是一个长远的情况。但总体而言,至少要做到单一维度上的提升,才可以称得上是一个好的金融科技公司。
下面一个问题,如何避免机器出错?
早年我们自己开玩笑,机器学习到底是机器学人还是人学机器,明明是人在学机器,我在卡梅隆6年才拿到我的博士学位,每天起早贪黑,科比说他看过洛杉矶凌晨4点的样子,我说这有什么稀奇的,我经常看到3点的匹兹堡。从我的经验来看,不是机器在学习人,而是人在学习机器。