大数据征信如何为一个人建立数据肖像?

原因我认为有几个:

美国的金融业已经很成熟,主流和非主流金融人群的需求都能被得到满足,基本上没有什么需要改良的地方;中国的情况则是五大行高高在上,其他行在行政束缚下面很难迈动脚步。

科技金融在美国没有机会,在中国机会很大。P2P,美国就那么两家,而中国我们的P2P 3000家都不止,及时在银监会和央行的联手打压下还有2000多家存活下来,可见这两个地方金融环境是天差地别的。美国现在所有的数据商都很完整,大家选取数据商就能完成征信工作,而中国很多地方需要自己把各个碎片的信息拼接在一起,而这也是我们征信创业者的机会。

我手中没有水晶球,没有办法准确预测中国征信未来的样子,但我有一点是可以确定的:

中国一定不需要几百家征信公司,即便这个市场比美国大很多,我想好的情况可能是有十几家征信公司这十几家术业有专攻,主要分为两类,一类是因为有积累了独有的数据源而形成独有场景的征信公司,比如像阿里巴巴这样的基于电商数据的电商征信,或者顺丰以快递为基础的快递征信,等等——我比较大胆的预测,每个场景可能只有一家征信公司能存活下来;第二类是跨领域跨平台的征信公司,可能有5到7家就差不多了。

最后一点,人工智能在征信领域中有哪些运用?

我简单举两个例子,第一个是深度学习。深度学习并不一定在所有金融领域中都有应用,其本质是需要有场景经验来调优的更复杂的人工神经网络。所以,实际上我们要做的是在缺乏有效的很多的好坏标签的情况下,如何利用有效的人工神经网络来做递推和归纳。