深度学习不是AI的未来

如果在训练数据集中纳粹主义是最流行的观点,深度学习靠自己永远无法明白为什么杀害犹太人、同性恋以及残疾人是错误的。难怪深度学习无法解释其自身决策,除了最简单的:“我(深度学习)读到最多的是‘纳粹主义是正确的’,因此它应该是正确的”。深度学习将会学习并模仿最具缺陷的逻辑而不去思考它的缺陷,包括恐怖主义。甚至孩童都可以自己明白电影中哪个家伙是坏人,但是深度学习做不到,除非人类首先明确教导它。深度学习中有些东西很酷,比如带有反向传播的梯度下降,以及自定义的深度学习硬件,但这大多来自统计学和几何学,很可能不会出现在 2037 年的人工智能时代。

对很多任务来说,深度学习人工智能正在或者将会变成违法的、不被社会所兼容的。**2018年5月25日起,公司或个人在收集 28 个欧洲国家公民数据时应遵循《一般数据保护条例》(GDPR)。届时欧洲的一些APP将被禁止使用深度学习,这导致AI初创公司拼命寻找深度学习的替代方案,否则将面临罚款的风险。罚款金额为全球营收的4%,包括美国部分。关于自动化决策的GDPR要求深度学习具有解释其决策的能力,以及防止基于种族、观点、健康等歧视现象的发生。**类似于GDPR的法律正在全球范围内制定,这只是时间问题。《美国公平信用报告法》要求披露所有对消费者信用评分产生不利影响的因素,最多只允许有4个。深度学习的因素可谓海量,而不仅仅是4个,如何将其简化为4个呢?人工智能,正如比特币ICO,开始忽视法规,但是法律与惩罚总会降临。

如果深度学习系统的工作是采取更多相关决策,而不是简单区分一张图像是否是猫,或者在自拍的哪部分添加兔耳,它们将会被非深度学习系统取代。人工智能必须是负责任的,可以使用简单、合法有效的语言向法官和用户解释其输出结果,这与深度学习大不相同。深度学习的复杂性,对法官和用户来说就像是“魔术”,这是一种法律风险,而不是一个很酷的未来。深度学习将会建议或警示人类,比如从医疗图像中检测疾病,并获得医生的验证,但这只是缺乏细节的部分自动化。面对被人工智能拒绝、并寻求解释的人们(例如工作、贷款被拒绝等),我们能说什么呢?

法律包含“解释权”,比如为什么工作或贷款被拒绝。深度学习给出的是非自然(合法)语言解释的结果。深度学习的代码容易获得,却不为法官或用户所接受,因为即使最好的数学家或其他算法也无法搞明白它,或者将模型简化成可以理解的语言。即使最后的决策是由人类做出的,人工智能工具也应给出详细的理由,人们可以认为它是错的(然后无视、推翻人工智能的决定),或者通过简单的复制、粘贴并且签署人工智能给出的解释来快速接受。没有人知道如何修改深度学习以给出简单到人类可理解的解释,因此深度学习不可能做到完全与我们的要求相符!这一问题同样影响到了若干其他人工智能和机器学习算法,但不像深度学习受影响那么严重。比如,如果决策树算法变成提升树或集成树,它也会变得不可解释。但是未来,可能会出现或发现能为自己的决策辩护的新的人工智能,它们将会在常规决策中取代深度学习和人类的位置。

在GDPR规定的情况中,只有人类职员可以拒绝申请:人工智能可自动化完成积极的结果,否则,如果它拒绝了一项贷款、工作等,就应该将这项任务交给人,让人工来处理这些会让用户感到生气或者要追究的消极结果。但是在拒绝的情况下,人类将不会从基于深度学习的人工智能中获得帮助或解释,他们不能获知深度学习的逻辑是否正确。他们需要自己从头检查数据,以决定是否最终拒绝,并且要为这个决定写一份合理的解释。此举风险在于为了节约时间和成本,人类员工会为人工智能的拒绝决定编造假的解释,并盲目接受人工智能的认可。但是决定人工智能给出拒绝决策的公平性的法官会询问为什么别人的被接受了,并且进行对比。安全起见,无论类似GDPR的法规是如何规定的,对于接受和拒绝,你都要有充足的理由。非深度学习的人工智能系统将最终成为唯一被人类所采用的系统,它们会把所有决策的解释提供给用户、法官和支持人员,不论是完全或部分自动化的决策。

在法律和深度学习之前,解释性已经是一个大问题。在反垄断案例中,谷歌等公司被质问为什么是这个产品而不是其他产品出现在搜索结果的第一个。下面也是深度学习出现之前的事:很多其他的算法同样以疯狂的方式混合数据以得到结果,因此没有哪个人可以轻易地重构出决策原因。法官被告知:工程师并不了解详情,以及被当作证据的几页线性代数。这样不会有好结果:甚至在特定的法律存在之前,多个案例承担着数十亿美元的罚款,收到要更变系统的警告。被自动拒绝了工作、贷款、退款的用户集体起诉商店、银行或保险公司的自动决策单元,将会变成常态,所以无法解释便意味着“无以辩护”、被罚款以及一场品牌公关灾难。