银行大数据应用解读以及发展分析

接下来分享几个我们与海外金融机构合作应用大数据的实际案例

1. 某澳大利亚大型银行应用“大数据”分析为自己的小微企业客户提供了一项免费的增值服务,以提高客户粘性。在这项服务里,银行为这些客户免费提供它们自己的客户和竞争对手分析:客户的财富结构,购买偏好,与竞争对手客户结构的差异等。而分析的基础数据来自于该银行零售业务中的个人支付数据。由于银行掌握的数据海量而精准,这样的分析就比一般的市场分析机构的成果更富有洞察。此项服务不仅为该银行提高了存量客户的粘性,也成为它们吸引新客户的一个重要工具。

2. 某海外大型银行通过“大数据”分析为自己的企业客户提供营销支持。例如,他们为自己一个卖手机的零售商客户分析了其客户在购买手机前后的其他购买行为。发现客户在购买之前出现频率最高的地方是交通枢纽,而购买之后则最可能出现在食品杂货店里。这样的分析帮助手机零售商明确定义了营销的最佳地点,从而优化了客户的营销资源配置。

3. 某海外银行通过“大数据”分析优化了自己的客户细分。传统银行做客户细分的主要维度是年龄、性别、职业、财富水平等。基于这样的细分做营销和产品设计容易“误伤一片”,会浪费不少的资源。在“大数据”分析的帮助下,银行做客户细分的思路开阔了很多,而且细分对于行动的指导性也越来越强。这家银行按照一个客户使用产品的“广度”(即产品的数量)和“深度”(即使用产品的频率)进行细分。这样的细分帮助该银行发现了一些从前没有注意到的机会。例如,细分中发现了一类“临界点”客户,即很有可能换银行的客户。基于数据分析还发现,客户换银行一个重要原因是因为自己的朋友们都在使用目标银行。于是,稳住这些客户的一个手段就是营销他的朋友圈。

此外,该银行还发现了一个占比不大(约7%)但很有意思的客群,姑且称之为“败家族”。这类客群的财富水平不高,达不到银行的贵宾门槛,所以常常被银行忽略。但是,这类客户有个特点,就是交易行为非常活跃。他们的消费习惯能够为银行带来可观的价值。这个案例可以带来两个启示:第一,“大数据”发现的未必是“大机会”,即单个机会的价值未必很高,而是“大量机会”,即不断找出新的洞察,而充分实现大量机会就可以获得“大价值”。第二,“大数据”往往并没有给金融机构带来翻天覆地的改变,但它可以为金融机构带来新的视角。客户细分是金融机构一直在做的事,但是,“大数据”可以帮助金融机构深化、细化自己的认识,找出以往被忽略的价值点。

4. “大数据”帮助金融机构发现指导行动、创造价值的关联关系。例如,某西班牙大型银行就客户的兴趣爱好和其金融行为进行“大数据”分析时发现,高尔夫球爱好者为银行创造的价值最高,而足球爱好者的忠诚度最高。这样的分析不仅可以指导银行进行精准营销,也能够帮助银行进行更加有目的的数据收集。

5. “大数据”在零售银行业务中的应用十分引人注目。但其实,“大数据”在公司银行业务中同样可以大显身手。某加拿大银行对于自己的医药零售商客群做了一个分析。该银行首先将这些客户按照销售额分成八类,进而计算每个药店为银行带来的收入。分析发现,在同一类中,客户每百万销售额所产生的银行收入之间的落差可高达17 倍。这家银行意识到,特征类似的中小客户给银行带来的价值却可以差异巨大。于是,这家银行为每一类客户找到了“标杆”,即对于银行贡献居中的客户,并分析其金融产品的配置情况。然后,这家银行比对每个客户与自己的“标杆”之间的差距,并用这些差距来指导客户经理进营销。而且,客户经理还可以与客户分享这些比对结果,帮助他们认识到自己与同业相比在金融方面的潜在需求。这样的分析既提高了营销的有效性,也为客户带来了金融服务之外的增值。