银行大数据应用解读以及发展分析

6. “大数据”能够帮助金融机构提升风控能力。Bankinter 是西班牙的一家精品银行,他的单体客户利润往往比规模领先的大型同业高上几倍。该银行专注于中高端客群,并高度注重技术的应用。Bankinter应用亚马逊的云服务,借助“大数据”分析进行行业发展模拟以支持对于公司客户的风险控制。公司客户的信贷风险除了与企业自己的状况有关之外,还会极大地受到行业发展的影响。但是,行业模拟在过去的技术条件下并不能广泛应用。“大数据”极大地提高了这种分析的可行性。以前,这家银行做一个行业的宏观模拟分析,一次运算平均耗时可达23 个小时,而现在,同样的分析只用20分钟左右。

7. “大数据”催生了风险控制领域的创新创业。美国一家创业公司应用电梯数据和黄页数据帮助银行进行风险预警。电梯运行过程中一直会有数据留痕,例如在某栋楼的每一层停了多少次等。而黄页是公开信息,某栋楼的某一层是哪家公司可以很容易查到。匹配这些数据就可以得出某家公司每天电梯停靠的次数。该公司的“大数据”分析发现,如果某家公司的电梯数据突然发生异常变化,可能代表该公司出现了经营变化。电梯停靠次数异常减少可能意味着员工的减少或者客户拜访次数的减少,无论如何,这样的信号应该引起银行的及时关注。将这样的预警信号植入贷后管理流程无疑会比单纯进行每季度或每年的贷后检查要更有针对性。

Scor!是一家依托社交数据帮助银行进行个人信贷风险评估的“大数据”公司。银行将申请贷款的客户情况报给Scor!并向其购买评估结果。Scor!的评估结果被植入信贷审批流程,作为银行内评估的补充。这样的合作正在帮助客户提升审贷速度和准确性。

8. “大数据”助力银行优化贷中和贷后管理。以Wells Fargo(富国银行)为例,他们应用“大数据”分析识别客户的异常行为作为风险提示信号。分析的数据基础是银行自己的海量的交易数据,即个人的支付数据、企业的交易数据等。在贷后管理中,“大数据”分析正在帮助银行优化催收管理。通过量化分析我们发现,近三成的失败催收源于联系不到借款人。而“大数据”分析能够帮助银行提升联系借款人的成功率。

上述案例只是金融机构应用“大数据”潜在可能性的“一斑”。海量的机会仍然有待开发。但我们观察到,相比技术的蓬勃发展,金融机构对于大数据的实际应用仍然差强人意。原因究竟在哪里?波士顿咨询对海外20 多家金融机构做了调研。

研究的目的是找出:第一,从数据到价值的过程是什么?

第二,哪里是瓶颈?

结果显示,从数据到价值的过程包括七个步骤:数据收集、获得数据拥有者的许可和信任、储存和处理技术、数据科学/ 算法、协调、洞察、嵌入式变革。

从数据到价值的过程包括七个步骤

而在这七步中有两个关键瓶颈:

  一是获得数据拥有者的许可和信任,即是否能够把数据整合并用起来;

  二是协调,即金融机构内部部门之间的协调问题。

例如,很多银行面临的问题是整合、打通散落在各个部门的数据,零售、对公、信用卡等。而在“协调”方面,金融机构常常要面对业务与技术沟通不畅的问题,数据难以转化为生产力。突破这些瓶颈的关键在于管理层面,而非技术。“大数据”之于传统金融机构,我们认为更大的意义在于它推动嵌入式变革的能力。

制约大数据发展的两个瓶颈

“大数据”时代要求试错、应变的机制,跨界复合型人才,开放灵敏的触角体系,这些都会挑战传统金融机构惯常的管理实践。这样的改变不仅对于汲取“大数据”的价值意义非凡,也是传统金融机构在以“互联网金融”为符号的变革时代里求生存、求发展的关键。