清华大学用大数据分析了9000条微博谣言

1. 谣言发布早期,通过用户举报和对可疑用户的监控建立疑似谣言的集合。一方面,将疑似谣言和谣言库中进行比对;另一方面, 对于在谣言库中没有匹配内容的谣言,通过查询该领域的专家库,推荐若干专家对该疑似谣言进行鉴别。

2. 谣言发布中期,通过自然语言处理技术分析疑似谣言的评论信息,通过社会网络分析技术分析疑似谣言的传播模式,判定该信息是否为谣言。

3. 谣言发布后期,对于判定为谣言的信息, 将其加入谣言库;对信息发布人进行可信性分析,确定其信用等级,将信用等级低于一定阈值的用户加入可疑用户库,在一段时间内对其发布的微博内容进行监控;对信息举报人和评论人进行专家发现,充实和更新该信息相关的知识领域的专家库。

当然,目前这一切还处于理论研究阶段,而建立可以用户库也需要以网站更严格地执行实名制为前提。用大数据、人工智能去对付谣言,前提是需要很多人交出更多的隐私,你愿意吗?