审核直播,机器能做什么?
利用深度学习算法设计的智能程序能通过快速迭代拥有强大的学习能力,并与视频直播、社交网络、云计算等领域企业合作,积累大量图片和视频数据,克服智能程序设计中的大数据壁垒,得到高精度的智能识别结果。
例如“鉴黄机器人”,通过将大量人工标注好的色情图片和正常图片来训练机器认识、学习这两类图片的特征,然后自动提取出可能是色情图片和正常图片的特征,当机器再“看到”相似特征的图片时,即可自动识别出来,当数据量越大,提取特征越准确,识别精确度越高。上文提到的图普科技的审核原理也是如此。
因此,新型审核方式的原理就是:
"企业根据自身需求,利用自动截图程序对直播画面定时(建议6-10s)进行实时截图,发送到图像识别云服务平台,机器自动识别后将结果分为确定和复审两部分,确认部分的识别精确度达到或超过人工,无需复审,对于复审部分,机器会根据可能性排序,人工再根据概率从高到低来审核。"
相对传统的纯人工审核的模式,这种新型审核模式的优势主要在于:
第一:改变传统付费模式,成本更低,计费更灵活
直播企业只需要按图片调用量付费,比如直播平台某日有推广活动,导致流量较大,需要审核力度较大,付费较多,但活动结束后,审核量减少,费用也会随之减少,不需要固定每日的付费额度。
第二:机器识别稳定,效率高
机器识别模型可以针对不同的应用场景训练机器,对于识别结果的确认部分的审核精准度达到99.5%,超过人眼准确度,需要人工复审的部分仅占图片总量的5%,随着模型的不断优化,精确度还会继续提升,复审率也就继续降低。
并且成熟运作的智能审核机器人的图片处理量日达3亿张以上,单张图片响应时间小于 0.2s,7x24h全天候服务。但是,如果纯人工审核3亿张图片,如果按照人眼每小时审核2万张左右的图片计算,则需要大约625天不停歇的工作才能审核完毕,相对人有限的精力,不停运转的机器明显更加稳定可控,效率更高。
第三:机器识别更简单安全
网络直播采用人工审核时,需要给每个审核人员配备相关设备及空间,因此企业需要投入更多的运营成本,尤其对于创业的网络直播企业,需要承受的经济压力更大,而机器识别只需要通过API调用即可直接使用服务。
此外,每个企业都有专属的ID账号,其所有调用数据都会被定期清除,不会长期存留API界面,不同企业之间数据是隔离的,无法调看非本ID的数据,不用担心企业信息泄漏,安全度更高。
据文化部透露,下一步将重点在经营主体管理、事中事后监管方面对网络表演关键环节进行规范,以及建立违规网络直播平台和违规“主播”警示名单和黑名单制度,加强行业自律。
所以,网络直播企业在利用机器识别提高内容监管有效度的同时,还要加大对主播素质培养和监管力度,守住经营的底线与红线。