纯粹数学的雪崩效应:庞加莱猜想何以造福了精准医疗?

 
图1 庞加莱猜想电脑三维模型

中国IDC圈4月15日报道,最近英国上议院议员马特?瑞德利(Matt Ridley)在《华尔街日报》上撰文 《基础科学的迷思》 (The Myth of Basic Science)。他认为“科学驱动创新,创新驱动商业”这一说法基本上是错误的,反而是商业驱动了创新,创新驱动了科学,正如科学家被实际需求所驱动,而不是科学家驱动实际需求一样。总之,他认为“科学突破是技术进步的结果,而不是原因”。

瑞德利先生的言论反映了许多人对基础科学的严重误解,会给年轻学子们带来思想混乱和价值观念上的困扰,有必要加以澄清。诚然,商业需求和工程实践会为基础科学提供研究的素材,比如历史上最优传输理论(OptimalMass Transportation Theory)和蒙日-安培方程(Monge-Ampere)起源于土石方的运输,最后猜想被康塔洛维奇解决,康塔洛维奇为此获得了诺贝尔经济学奖。数年前,为了解决医学图像的压缩问题,陶哲轩提出了压缩感知(Compressive Sensing)理论。但是,从根本上而言,基础科学的源动力来自于科学家对于自然真理的好奇和对美学价值的追求。基础科学上的突破,因为揭示了自然界的客观真理,往往会引发应用科学的革命。纯粹数学的研究因为其晦涩抽象,实用价值并不明显直观,普罗大众一直倾向于认为其“无用”。但实际上,纯粹数学对应用科学的指导作用是无可替代的。

计算机科学和技术发展的一个侧面就在于将人类数千年积累的知识转换成算法,使得没有经历过职业训练的人也可以直接使用最为艰深的数学理论。在拓扑和几何领域,往往很多具有数百年历史的定理仅仅在最近才被转换成算法。但是,依随计算机技术的迅猛发展,从定理到算法的过程日益加速。很多新近发展的数学理论被迅速转换成强有力的算法,并在工程和医疗领域被广泛应用。

历史一再表明,以满足人类好奇心为出发点的基础理论研究,其本质突破往往不能引起当时人类社会的重视,宛若冰川旷谷中一声微弱的呐喊,转瞬间随风消逝,但是这一声往往会引发令天空变色,大地颤抖的雪崩。庞加莱猜想的证明就是一个鲜明的实例,虽然雪崩效应还没有被大众所察觉,但是雪崩已经不可逆转地开始了!

庞加莱猜想

法国数学家庞加莱(Jules Henri Poincaré)是现代拓扑学的奠基人。拓扑学研究几何体,例如流形,在连续形变下的不变性质。我们可以想象曲面由橡皮膜制成,我们对橡皮膜拉伸压缩,扭转蜷曲,但是不会撕破或粘联,那么这些形变都是连续形变,或被称之为拓扑形变,在这些形变下保持不变的量就是拓扑不变量。如果一张橡皮膜曲面经由拓扑形变得到另外一张橡皮膜曲面,则这两张曲面具有相同的拓扑不变量,它们彼此拓扑等价。如图2 所示,假设兔子曲面由橡皮膜做成,我们象吹气球一样将其膨胀成标准单位球面,因此兔子曲面和单位球面拓扑等价。

 

图2. 兔子曲面可以连续形变成单位球面,因此兔子曲面和球面拓扑等价。

兔子曲面无法连续形变成轮胎的形状,或者图3中的任何曲面。直观上,图5中小猫曲面有一个“洞”,或称“环柄”;图3中的曲面则有两个环柄。拓扑上,环柄被称为亏格。亏格是最为重要的拓扑不变量。所有可定向封闭曲面依照亏格被完全分类。

图3. 亏格为2的封闭曲面。亏格是曲面最重要的拓扑不变量。

庞加莱思考了如下深刻的问题:封闭曲面上的“洞”是曲面自身的内蕴性质,还是曲面及其嵌入的背景空间之间的相对关系?这个问题本身就是费解深奥的,我们力图给出直观浅近的解释。我们人类能够看到环柄形成的“洞”,是因为曲面是嵌入在三维欧式空间中的,因此这些“洞”反应了曲面在背景空间的嵌入方式,我们有理由猜测亏格反映了曲面和背景空间之间的关系。

 

图4. 曲面上生活的蚂蚁如何检测曲面的拓扑?