纯粹数学的雪崩效应:庞加莱猜想何以造福了精准医疗?

但是另一方面,假设有一只蚂蚁自幼生活在一张曲面上,从未跳离过曲面,因此从未看到过曲面的整体情形。蚂蚁只有二维概念,没有三维概念。假设这只蚂蚁具有高度发达的智力,那么这只蚂蚁能否判断它所生活的曲面是个亏格为0的拓扑球面,还是高亏格曲面?

 

图5. 亏格为1的曲面上,无法缩成点的闭圈。

庞加莱最终悟到一个简单而又深刻的方法来判断曲面是否是亏格为0的拓扑球面:如果曲面上所有的封闭曲线都能在曲面上逐渐缩成一个点,那么曲面必为拓扑球面。比如,我们考虑图5中小猫的曲面,围绕脖子的一条封闭曲线,在曲面上无论怎样变形,都无法缩成一个点。换言之,只要曲面亏格非零,就存在不可收缩成点的闭圈。如果流形内所有的封闭圈都能缩成点,则流形被称为是单连通的。庞加莱将这一结果向高维推广,提出了著名的庞加莱猜想:假设M是一个封闭的单连通三维流形,则M和三维球面拓扑等价。

 

图6. 带边界的三流形,用三角剖分表示。

在现实世界中,无法看到封闭的三维流形:正如二维封闭曲面无法在二维平面上实现,三维封闭流形无法在三维欧式空间中实现。图6显示了带有边界的三维流形,例如实心的兔子和实心的球体拓扑等价。这些三维流形用三角剖分来表示,就是用许多四面体粘合而成。如图所示,体的三角剖分诱导了其二维边界曲面的三角剖分。实心球实际上是三维拓扑圆盘,我们可以将两个三维拓扑圆盘沿着边界粘合,就得到三维球面,恰如我们可以将两个二维拓扑圆盘沿着边界粘合而得到二维球面一样。当然,这已经超出人们的日常生活经验。

面单值化定理

近百年来,庞加莱猜想一直是拓扑学最为基本的问题,无数拓扑学家和几何学家为证明庞加莱猜想而鞠躬尽瘁死而后已。相比那些最后成功的幸运儿,众多默默无闻,潦倒终生的失败者更加令人肃然起敬。老顾曾经访问过吉林大学数学学院,听闻了有关何伯和教授的生平事迹。何教授终生痴迷于庞加莱猜想的证明,苦心孤诣,废寝忘食,愈挫愈奋,九死不悔,直至生命终结,对于庞加莱猜想依然念念不忘。何教授绝对不是为了任何实用价值或者商业利益而奋斗终生的,而是为了对于自然界奥秘的好奇,对于美学价值的热切追求,这种纯粹和崇高,是人类进步的真正动力!

 

图7. 人脸曲面上连接两点的测地线。

作为拓扑学最为基本的问题,庞加莱猜想的本质突破却来自于几何。给定一个拓扑流形,如给定图6中四面体网格的组合结构,我们可以为每条边指定一个长度,使得每个四面体都是一个欧式的四面体,这样我们就给出了一个黎曼度量。所谓黎曼度量,就是定义在流形上的一种数据结构,使得我们可以确定任意两点间的最短测地线。图7显示了人脸曲面上的两条测地线。黎曼度量自然诱导了流形的曲率。曲率是表征空间弯曲的一种精确描述。给定曲面上三个点,我们用测地线连接它们成一个测地三角形。如果曲面为欧几里德平面,那么测地三角形内角和为180度。球面测地三角形的内角和大于180度,马鞍面的测地三角形的内角和小于180度。测地三角形内角和与180度的差别就是三角形的总曲率。那么,给定一个拓扑流形,我们能否选择一个最为简单的黎曼度量,使得曲率为常数呢?

 

图8. 曲面单值化定理,所有封闭曲面都可以保角地形变成常曲率曲面。

这一问题的答案是肯定的,这就是曲面微分几何中最为根本的单值化定理。单值化定理是说大千世界,各种几何形状千变万化,但是无论它们如何变化,都是万变不离其宗:所有的曲面都可以共形地变换成三种标准曲面中的一种,单位球面,欧几里德平面和双曲平面。标准空间对应着常数值曲率,+1,0和-1,如图8所示。所谓共形变换,就是保持局部形状的变换,局部上看就是相似变换。相似变换保持角度不变,因此共形变换也被称为是保角变换。图9显示了从曲面到平面的一个共形变换。单值化定理断言了所有封闭曲面可以配有三种几何中的一种:球面几何,欧氏几何和双曲几何。曲面微分几何中几乎所有的重要定理都绕不过单值化定理。