图17. 大脑海马体的几何分析。
如果说大脑皮层是数据库,那么海马体就是数据库的索引,如图17所示。如果海马体发生病变,长期记忆就无法形成,同时大脑中的长期记忆也无法被取出。很多神经疾病都能够引起海马体的变形,例如癫痫、吸毒、脑退化症等等。对海马体的几何形状进行定量比较分类是非常重要的。一种精确的方法是将海马体共形映到单位球面上,则面积的变化率给出了初始黎曼度量的全部信息,再加上平均曲率,那么海马体的所有几何信息被完美保留。换言之,我们将海马体曲面转换为球面上的两个函数(面积变化率,平均曲率)。在球面上比较不同的海马体曲面,从而精确衡量曲面之间的相似程度,进行分类诊断。相比于传统方法,这种基于几何的诊断方法更加定量而精确。
图18. 人脸曲面的精确匹配。
美容技术
在美容手术领域中,术后效果评估是重要的一个环节,这需要将术前和术后的人脸曲面进行精确的匹配。如图18所示,我们扫描了同一个人的带有不同表情的两张人脸曲面,然后在人脸曲面之间建立了精确的双射。平静表情的人脸上每一个小圆映到微笑表情的人脸上对应的小椭圆,由此我们可以测量对应点的几何变化。因此,三维人脸曲面间精确映射是美容领域中至关重要的技术。
19. 三维人脸曲面被共形地映到二维平面上,所用方法就是里奇曲率流。
如图19所示,我们用里奇曲率流方法,将人脸曲面的黎曼度量变成曲率为0的平直度量,将三维人脸曲面平铺到二维平面上面,然后在二维平面区域之间建立光滑双射,从而诱导三维人脸曲面间的双射。当然,这种方法也可以用于三维人脸识别,但是人脸识别对于映射的精确度要求没有如此之高。
在精准医疗的其他领域,例如牙齿整形、人造心脏瓣膜、人造骨骼、放射治疗实时监控、肝脏手术计划等等,都需要对各种人体器官进行影像获取、几何重建、特征分析等,里奇流方法都会起到重要的作用。
总结和展望
庞加莱猜想本身纯粹而抽象:单连通的闭三维流形是三维球面,这一猜想本身似乎并没有任何实用价值。其结论的简单直观,往往给非数学专业人员无病呻吟之感。但是纯粹数学所追求的严密性迫使无数拓扑和几何学家们前仆后继,奉献终身,终于在众多数学家的共同努力下完成了证明。二维曲面的几何化定理——单值化定理从理论证明到算法提出,历经了百年;三维流形的瑟斯顿几何化纲领从理论证明到算法提出,几乎是同时。三维流形的拓扑理论和计算理论一开始就深刻地纠缠在一起。这表明,在现代,依随计算机技术的发展,纯粹理论到应用算法的开发周期越来越短。
同时,我们看到,在证明庞加莱猜想的过程中,瑟斯顿的几何化纲领将三维流形的风景一览无遗,哈密尔顿的里奇流给出从曲率来构造黎曼度量的强有力的工具,哈密尔顿和佩雷尔曼的奇点演化理论使得原来理论的禁区被彻底打破。笔者和许多数学家发展了离散里奇流的理论和算法,并且系统性地将曲率流应用到许多工程和医疗领域。在实践中,我们深深体会到,在许多关键的应用中,曲率流的方法无法被其它任何方法所取代。目前在社会实践中,里奇流在二维曲面上的应用已经开始逐步展开。但是里奇流在三维流形上的应用更为深邃奥妙,强悍有力,目前还没有任何实际应用。一方面因为三维流形远远超越日常生活经验,另一方面也是因为和曲面微分几何相比,三维流形的拓扑和几何知识远未普及。但是作为自然真理的忠实刻画,迟早三维流形的拓扑和几何会在社会实践中大行其道。庞加莱猜想所引发的雪崩效应终究会改写历史进程。
当庞加莱提出他的拓扑猜想,瑟斯顿洞察三维流形的基本几何结构,哈密尔顿悟出里奇曲率流,佩雷尔曼看出哈密尔顿的曲率流本质上是所谓熵能量的梯度流,他们所追求的是体悟几何结构的壮美,和自然真理的深邃。他们绝不会将实用价值作为其终极目的。实用技术的积累往往只能带来进化(Evolutio),好奇心的满足却能真正带来革命(Revolution)。愿更多的年轻人在万丈红尘中,在浮躁喧嚣中,能够保持诚挚纯真,保持强烈好奇,保持对自然界美丽的敏感,保持对科学真理的激情!