“垃圾进 垃圾出”大数据征信可靠不可靠

美国《公平信用报告法案》解决个人征信问题

美国在1970年通过《公平信用报告法案》以后,通过几十年的摸索和实践,基本上解决了个人征信问题。房贷中的人品分析和已有债务在信用档案中可以直接找到,减少了分析和审查的工作量。而对于无抵押小额贷款或信用卡申请,信用档案加上申请人口头报告的收入情况,就可以满足贷前分析和审查的数据要求。这极大减少了银行无抵押小额贷款或信用卡发行的费用,其结果是信用卡在2000年普及到美国成人人口的80%。

《公平信用报告法案》以法律的形式具体规定个人信用信息局、信息使用者和信息提供者的责任和义务。要求个人信息局公平、合理、准确,保护个人信息和隐私。法律指出消费者有了解自身信用文档的权利;信息局对外透露个人信息须有信息主体本人书面同意或其他具体合理用途;当信息主体本人提出信息不准确不完整时,信息局和信息提供者必须调查并给与答复。该法案还规定,个人信用档案中超过一定年限的负面纪录必须删除。例如,破产记录只能保留7年。

至于信用评分使用的信息,法律界有一致的解释。《公平信用报告法案》适用于个人信用评分使用的所有信息。这就是为什么FICO只使用信用信息局的信息来评分。

在《公平信用报告法案》通过之前,很多信息局的信息中,除了直接从债权人处获取的属于具体事实的消费者信用记录,还有一部分被定义为“消费者调查报告”的非事实信息。它的目的是了解一个消费者的性格、信誉、个性特征及生活方式等;其信息是通过“调查访谈”认识或者知道被调查者的人群,比如被调查者的邻居、朋友、同事或者合伙人等。《公平信用报告法案》对这种调查行为和信息进行了详细定义和具体限制,把它摒弃于公平信用报告之外,目的是使信用报告符合三大原则:准确性,透明性,相关性。

大数据征信难题

征信法律是大数据征信的第一个难题。

去年三月,美国国家消费者法律中心对主要的大数据征信公司进行了调查并发表了一篇重要的调查报告。题目是《大数据,个人信用评分的大失望》。文章指出大数据征信公司的信息错误率高于50%。这些公司的数据模型繁多又复杂,使用不准确的数据,有“垃圾进,垃圾出”之嫌。文章对这些公司的合法性提出质疑,建议政府加强监管。

大数据征信在中国问题更大。“征信管理条例”明确规定“采集个人信息应当经信息主体本人同意,未经本人同意不得采集。”。这比美国《公平信用报告法案》对信息采集的要求更严格。如何按照条例要求,让信息主体本人同意用没人能说得清的大数据对其进行征信,这不是个容易事。

坏账的“不可预测性”是大数据征信的第二个难题。

征信的目的是预测借款人是否会守信还贷。那么人为什么会借钱不还?这里面有两个原因,一是有钱就是不还;二是想还就是没钱。第一种情况在美国很少。原因是信用报告和就业、住房相关,对中产阶级价值很高。有工作、有钱的人不会为几万美元债务毁掉自己的信用,这是赔本买卖。但是 2008年房贷危机后产生了一个比较特殊的现象叫做策略性欠债不还——借房贷的房主在房价下跌到比贷款额低很多的时候,再去买一栋房子,然后不付以前买房子欠的贷款,把以前的房子还给银行。这一策略可以“套利”几十万美元。银行只能把房子收回,损失几十万美元。虽然这些人的信用记录上会有一个污点,但是这对信用报告的影响有限,因为其他的债务照付不误。这种坏账历史上没出现过。造成这一现象的原因一部分是经济和房价波动,但更主要的原因是政府政策失误。大数据对这种坏账的预测(征信)能力非常有限。

至于没钱还债又可分成两个原因。一个原因是借款人花钱花得多了,入不敷出。美国的一些研究调查显示大概有三分之一的美国人是”月光族“ — 每个月把挣的钱基本上花光。这部分人很多是低收入,一旦发生意外,比如车祸、生病,或者别的一些紧急用钱的情况,他们就只能把能借到的钱都用上。这些借款的利息都很高,利滚利,时间久了,还不了债,就成了坏账。有了坏账信用评分就比较低。这部分人有一个不雅的统称叫“次贷借款人” (subprime borrower),在个人信用信息局的档案里占20%-25%。银行根据信用报告和信用评分的信息识别这样的客户,对他们非常谨慎,贷款卡的紧,贷款额比较低,利息也比较高。美国几乎所有大数据征信公司都是在做“ 次贷借款人” 的征信细分(包括颇受国内关注的Zestfinance),声称可以通过大数据找出其中信用好的借贷人,但到目前成效不大。