2.基于大数据自动化流程提升效率
在通过反欺诈引擎,识别出真正有还款意愿的借款人后,这个阶段的重点在于建立大数据辅助的信用风险评分模型,尽可能的从多维度数据补强出传统金融数据不足之处,精准定位达不到传统金融机构要求,但是又具有良好还款能力的借款人。目前行业内流行较广的应用是在个人征信过程中,针对小额度(低于1万元)的贷款需求尽量采取自动化、批量化的模型审批系统,将原先需要人工花费30分钟、逐一审核的15个风险控制点,采取自动化和接口的方式,在1分钟内能完成风险定价和放贷,极大地提升运营的效率,更有效地通过技术手段压缩了运营成本。不过针对大金额的借贷,考虑到欺诈风险和成本较高,传统的金融征信数据和手段依旧不可或缺,同时使用大数据进一步提升风险管控和提高效率,例如通过接口自动实现身份证、法院、社保的信息核实,可以提高准确率和审批效率。未来也可以试图在传统风控打分模型中引入更多的大数据元素,作为评级的参考标准,例如有金融参考性的保险数据、航空记录、社保记录等。
3.构建基于场景的数据风险管理体系
通过建设交易借贷的场景一体化,是目前各大互联网金融平台和传统金融机构进行错位竞争的舞台。其中由于借款人是直接通过信用借贷行为取得所想要的产品或服务,套现诈骗风险相对较低,金额一般也较小,各大平台借鉴着灵活的体系和快速执行力,纷纷投入精力设计各种低风险、场景化的金融应用服务,并不断持续优化客户体验。
场景化金融的风险管理要素,在任何一个的场景中,都有借款人、贷款用途(购买特定产品和服务)、资金流和产品服务流这几个基本要素,在这些特定点中,通过下列规则的设定和组合,可以有效的极大的降低风险。第一,基于购买特定产品和服务类场景的借贷产品,例如产品服务非一次性 交付,如长达一年的教育课程培训套餐或多次实施的医疗美容套餐。第二,资金流和产品服务流形成闭环,意味着借款人不能拿到现金,平台的资金流是直接付给产品服务提供方,如在线分期购买iPhone、个人二手车消费贷款。第三,风险可控有抵押需要快速周转灵活调度资金的场景,如二手车商的经营贷款、房地产置换的赎楼贷,也是很好的消费场景。
不过考虑到每个场景设定的不同,对应的风控要素自然也不同,最理想的 互联网金融 平台模式,会建立数十种不同的场景化金融,针对每个场景定义出不同的风控要素、准入条件和禁入人群、利率定价、还款周期等等。
从实操的角度来说,第一步应该是在每一个风控场景,由风控人员和技术人员设定出精密的各种金融要素条件,第二步是尽量善用外部数据源来辅助,能真正体现每一个互联网金融平台的产品设计和风控水平。
4.做催收贷后管理的应用
在传统数据受限的场景下,大数据能显著提升贷后催收的成果,目前国内各大银行信用卡中心都已经开始探索这方面的应用,互联网金融行业也早就已经着手使用。具体来说,主流应用是查找逾期失联客户的电话、地址、邮箱、QQ 、微信、微博等信息。帮助委托方与失联客户建立沟通渠道。如果还是失败,大数据公司往往会进一步分析该手机号最常联系人,做进一步联系,试图联系失联客户。
5.在获客和客户价值挖掘上的应用
传统金融机构或银行,目前评价一个客户价值,相对来说较为片面。举例来说,一个客户在某银行里,只有一张借记卡,没有其他信用卡或贷款服务,只有账户里面几千元活存,那这个客户对银行来说,往往被定义为交易不活跃的低价值客户。
如果可以通过大数据角度来看,通过身份证号、手机号进行客户画像描绘后,可能分析出来这个客户经常关注互联网理财,经常频繁使用各种股票和银行APP,较高频次的国内和国际航空记录。这个时候分析出来的结果反而可能是高净值客户。通过大数据可以帮助金融机构和互联网金融把客户画像描绘的更加完整。这样一来,结合了原先的传统情景和大数据分析后的场景,金融机构和互联网金融平台的决策就会截然不同。这个客户虽然在银行或互联网金融平台暂时是一个低价值客户,但实质上是一个高净值客户,可以通过适当推送的产品组合,并结合电话销售,推荐适合的金融产品或服务,例如全家海外旅游分期贷款,或者短期高收益的金融产品。这也是通过大数据分析能改变传统获客和客户挖掘交叉营销的模式。