中国IDC圈2月19日报道:商业银行风险管理者要具备充分的想象力和开创性,致力于实现商业银行风险数据的梳理、汇总及整合,并建立起统一、强大的风险数据管理体系,助力商业银行提升竞争力。
大数据正成为一种核心资源,就像农业时代的土地、工业时代的能源,其价值意义非凡。就银行业而言,互联网金融的蓬勃发展使得商业银行的风险数据从薄弱到丰富,客户与经营数据等成为银行业客户风险分析和定制化服务等的基础,也成为商业银行在电子商务时代难以复制的核心竞争力,如今,商业银行开始愈加重视互联网金融下的数据治理及大数据风险管理技术工作。
这一工作涉及商业银行业务经营和风险管理的方方面面。摆在商业银行面前的任务很多,比如,要明确数据质量管理组织架构,对数据质量持续评估、数据质量问题管理、数据质量主动提升及被动清洗以及数据质量执行评估的相关流程进行规范,采取银行业务、系统与数据的三位一体整合理念,持续推进数据标准与数据质量体系的建设,为风险管理能力的提升夯实技术与数据基础。
在大数据丰富的银行业,有必要培养以上充分挖掘、使用数据的技术和能力,否则再多的数据也没有价值。但,这并非是一蹴而就的,在某种程度上商业银行的数据治理工作可以说是一场革命,是一整套全新的体系和不同机制的实践。
治理组织架构
数据治理组织架构是确保数据治理目标能够得以实现的保障,各种管理制度、规范都必须依赖组织架构才能顺利施行。良好的数据治理组织架构,可以从全企业的视角协调、统筹各个层面的数据治理工作,明确部门职责与角色职责,建立跨部门的有效协作机制,保障数据治理体系正常运转。
基于成熟的数据治理方法论,有代表性的数据治理组织架构,如图1所示,其中包括董事会及高级管理层、数据治理委员会、数据治理主管部门以及数据治理执行部门。
作为数据治理的决策层,董事会、高级管理层与数据治理委员会需要高度重视并积极推动数据治理工作。银行董事会应制定明确的政策,将本行数据治理(涵盖数据标准管理与数据质量管理)纳入内控合规体系和战略规划之中,并定期对其有效性和执行情况进行评估。高级管理层,应确立数据治理的目标,明确职权和责任,定期对本行数据治理水平进行评估,并有效落实数据治理问责制。
商业银行数据治理组织架构形成后,数据治理的决策层、管理层及执行层需要互相支持并积极配合,共同提升全行数据治理认知程度,进而推进数据治理体系建设,从而保证全行数据管控工作的有效开展。
数据标准及数据质量管理流程
在数据治理组织架构形成的同时,还要建设数据标准管理流程及数据质量管理流程,并在数据治理工作中予以遵循。如图2所示,数据标准管理流程包括年度计划制订、数据标准制定、数据标准发布、数据标准落地执行,以及数据标准评估。
年度计划制订,是指基于银行年度业务管理目标与信息系统建设需求,并充分考虑外部监管要求及银行业务和技术发展对数据标准的要求,制订数据标准年度工作计划。数据标准主管部门应基于各部门对年度计划的建议,结合本部门的工作现状及实际需求,拟定年度计划,并报请数据治理委员会审阅。
数据标准制定,是指为确保数据标准有效反应银行业务发展变化情况,对其内容进行新增、修订、废止的过程。数据标准主管部门应根据年度工作计划开展数据标准制定工作,总行各部门、分行若有数据标准制定需求,应向主管部门提出,主管部门牵头进行标准制定。
数据标准发布,是指数据标准在全行范围内的公布,公布内容涵盖新增、修订及废止的最新标准结果。数据标准新增、修订、废止的内容,由数据标准主管部门通过全行发文的方式进行通告,并更新数据管控平台内的相关内容。
数据标准落地执行,指在日常业务管理中以及在信息系统建设中执行数据标准。数据标准主管部门负责牵头,并在科技部门的配合下监督和检查数据标准在全行系统中的落地执行情况,并对标准落地不到位的系统采取必要措施,以保证数据标准持续有效贯彻执行。
数据标准评估,是指对已发布的数据标准内容、数据标准执行、数据管控平台应用情况、数据标准管理工作等方面进行全面的评估,以确保数据标准管理能够适时反应业务需求的发展变化。评估周期原则上不超过一年,由数据标准主管部门基于调研结果,联合各部门拟定评估报告,并报请数据治理委员会审阅。