360陶耀东:工业大数据助力工控安全

中国IDC圈4月27日报道,互联网的发展使得大数据引起人们广泛关注。现如今大数据技术早已渗透到金融、通讯等行业以及生物学、物理学等领域。大数据在容量、多样性和高增速方面的爆炸式增长全面考验着现代企业的数据处理和分析能力,与此同时也为各个行业带来了准确洞察市场行为的机会。迄今为止大数据技术与产品有哪些创新,工业大数据应用面临哪些挑战,金融行业大数据应用现状如何等。围绕这一系列问题,4月27日至28日,由工业和信息化部指导、中国信息通信研究院主办的"2016大数据产业峰会"在北京国际会议中心盛大召开。

其中在27日下午的"大数据与工业互联网"分会坛上,360沈阳研发中心总经理陶耀东先生作了关于"互联网和工业大数据的关系"的主题演讲。

500-333文章照片-大数据与工业互联网-陶耀东

360沈阳研发中心总经理陶耀东先生

陶总在安全领域为大家做了分享。大家可能会想怎么360还会在工业互联网里。我们现在叫360网神。360因为在安全领域这么多年技术的积累,从美国退市以后有一个战略是要为国家的安全服务,所以360成立了企业安全集团。专注于为国家、为企业解决相关的安全问题,同时还收购了传统的安全企业像网神。所以,对于企业安全的品牌我们叫360网神。

我原来做了很多年的工业控制系统,差不多十多年,而且我是用国产的龙兴处理器来做数控系统,现在也在批量的使用。我相当于也是从工业界跨到互联网界,刚才有些专家是从互联网界IT界跨到工业界,非常的感同身受。

王院长介绍的智能制造前面一端的数据,我们都有,但是后端我们开始关注于维护和使用数据的时候,又有点像互联网,我的东西卖给你、交给你以后我们的联系才刚刚开始,你之后产生的需求才是对我们真正有价值的。

我今天演讲的题目叫工业大数据助力工控安全。李总讲到工业互联网的架构里,最左边对于保障的支撑她提到了安全,今天各位演讲嘉宾对安全提的比较少,但是在李总演讲的架构里涉及到网络安全、设备安全、控制安全、数据安全、应用安全。安全会像我们开车的保险一样是一个标配,是少不了的。

从以下四个方面做介绍,一是工业大数据特点,二是工业安全的挑战,三是大数据与工控安全模型,四是实践与展望。

工业大数据是我们把电机的电流信号、加速度的信号拿出来就叫工业大数据了吗?如果我们不会用的情况下它只是一堆数,根本不叫大数据,工业大数据就有一定的它自己的特点,与传统大数据相比。

传统大数据思维的特性、量、多样性、速度、精确性、可见性、价值,要让数据变成人可以看得懂的东西,并且找到它后面的价值。这是工业大数据更看重的。工业大数据跟传统大数据的差别还在于它的专业性。任何的工业领域基本上都会有一个专门的门类或者一个大学里面的专业,如果只是数据分析师没有专业背景是做不了的。还有工业大数据数据的维度之间有各种各样的关联。

然后是流程性,不管是离散制造业还是流程工业,工序都是一步接着一步的,打乱了都是做不了的。所以有流程性和时序性,如果时序打乱了肯定是违反基本原则的。另外就是它的可解释性。工业大数据一般你找它的数据的结果都是有一定的逻辑和解释性的。

工业大数据和传统说的大数据或互联网大数据,有这么一个表格,这是我之前跟美国智能维护系统合作。互联网大数据在数据量的需求上是大样本数,工业大数据是尽可能全面的使用样本。它不一定要求数特别大,但是量要全面。对于数据质量来说,互联网大数据相对低,但是工业大数据较高。因为工业现场可能会有很多的噪声,比如说AD值等等。对于数据属性的解读,互联网大数据关心它们之间的关联关系,可能不强调他们的目的关联,而工业大数据会有这样的要求。在分析手段上互联网大数据常用的统计分析为主,比如说关联聚类,工业大数据还有一定逻辑的流水线式的分析在里面,一定顺着正常工业流程来分析。同时强调跨学科技术的融合,包括数学、物理、机器学习等等。

对于准确性的结果来说,互联网大数据是较低的,而工业大数据较高。我分析人的绘像以后推给你,如果推错了没有关系,但是在工业领域如果绘错了有可能停机。所以分析的结果要求是非常高的。